
Simulink® Real-Time™

API Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Real-Time™ API Guide

© COPYRIGHT 2002–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 2 (Release 13)
October 2002 Online only Updated for Version 2 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)

Contents

Introduction

1
Simulink Real-Time APIs . 1-2

Simulink Real-Time API for Microsoft .NET
Framework . 1-3

Simulink Real-Time C API . 1-5

Required Products . 1-7

Simulink Real-Time API for Microsoft .NET
Framework

2
Using the Simulink Real-Time API for .NET
Framework . 2-2
Features and Benefits . 2-2
xpcosc Client Applications . 2-3
File Server Browser Client Application 2-3

Simulink Real-Time .NET API Object Model 2-4

Simulink Real-Time API for .NET Framework
Classes . 2-5
Mathworks.xPCTarget.Framework.xPCTargetPC 2-5
Mathworks.xPCTarget.Framework.xPCApplication 2-6
Mathworks.xPCTarget.Framework.xPCScopes 2-6
Mathworks.xPCTarget.Framework.xPCParameters 2-6
Mathworks.xPCTarget.Framework.xPCParameter 2-6
Mathworks.xPCTarget.Framework.xPCSignals 2-7
Mathworks.xPCTarget.Framework.xPCSignal 2-7

v

Mathworks.xPCTarget.Framework.xPCAppLogger 2-7

Simulink Real-Time .NET API Usage 2-8

Simulink Real-Time .NET API Application
Deployment . 2-10

Simulink Real-Time API for C

3
Using the C API . 3-2

Visual C Console Application . 3-4
Target Application . 3-4
Folders and Files . 3-4
Building the Simulink Real-Time Application 3-6
Creating a Visual C Application . 3-6
Building a Visual C Application . 3-9
Running an Simulink Real-Time Visual C API
Application . 3-10

Using the Simulink Real-Time C API Application 3-10
C Code for sf_car_xpc.c . 3-17

Simulink Real-Time .NET API Examples

4
Visual Basic GUI Using .NET . 4-2
Before Starting . 4-2
Accessing the Demo Project Solution 4-3
Rebuilding the Demo Project Solution 4-3
Using the Demo Executable . 4-4

vi Contents

Simulink Real-Time API Reference for Microsoft
.NET Framework

5
Simulink Real-Time API for Microsoft .NET Framework
— Alphabetical List . 5-2

Simulink Real-Time API Reference for C

6
C API Error Messages . 6-2

C API Structures and Functions — Alphabetical List . . 6-6

Simulink Real-Time API Reference for COM

7
COM API Methods — Alphabetical List 7-2

MATLAB API

8
MATLAB API — Alphabetical List 8-2

vii

viii Contents

1

Introduction

• “Simulink® Real-Time™ APIs” on page 1-2

• “Simulink® Real-Time™ API for Microsoft .NET Framework” on page 1-3

• “Simulink® Real-Time™ C API” on page 1-5

• “Required Products” on page 1-7

1 Introduction

Simulink Real-Time APIs
The Simulink® Real-Time™ software provides several APIs that enable you to
create custom applications to control real-time applications running on target
computers. These include Simulink Real-Time MATLAB® Language, the
Simulink Real-Time API for Microsoft® .NET Framework, and the Simulink
Real-Time C API. These interfaces provide the same functionality for you to
write custom solutions (for example, client target applications and batch
runs) that use the Simulink Real-Time software. The Simulink Real-Time
documentation collectively refers to these APIs as Simulink Real-Time API.

The Simulink Real-Time APIs allow you to:

• Establish communication between the host computer and the target
computer via an Ethernet or serial connection

• Load the target application, a .dlm file, to the target computer

• Run that application on the target computer

• Monitor the behavior of the target application on the target computer

• Stop that application on the target computer

• Unload the target application from the target computer

• Close the connection to the target computer

The following sections describe each library:

• “Simulink® Real-Time™ API for Microsoft .NET Framework” on page 1-3

• “Simulink® Real-Time™ C API” on page 1-5

1-2

Simulink® Real-Time™ API for Microsoft® .NET Framework

Simulink Real-Time API for Microsoft .NET Framework
The Simulink Real-Time API for Microsoft .NET Framework consists of
objects arranged in hierarchical order. Each of these objects has methods
and properties that allow you to manipulate and interact with it. The API
provides a number of classes, including those for target applications, scopes,
the file system, and the target computer. The xPCTargetPC class is the main
class that sits on top of a hierarchy of classes. This document presents the API
reference. You can use these API functions from languages and applications
that support managed code.

The Microsoft Windows® API supplies the infrastructure for using threads.
The Simulink Real-Time API for Microsoft .NET Framework builds on
top of that infrastructure to provide a programming model that includes
asynchronous support. You do not need prior knowledge of threads
programming to use this API.

The Simulink Real-Time .NET object model closely models the Simulink
Real-Time system. One xPCTargetPC Class object represents one Simulink
Real-Time system.

An xPCApplication Class object represents the target application. It
contains xPCSignals, xPCParameters, and xPC*Logger objects. These objects
respectively represent the signals, parameters, and logs available in the
target application.

An xPCFileSystem Class object represents the entire Simulink Real-Time
file system. It contains objects like the following:

• xPCDriveInfo, which represents a volume drive that the target computer
recognizes.

• xPCDirectoryInfo, which represents a target computer folder item.

• xPCFileInfo, which represents a target computer file item.

The following graphic outlines the xPCTargetPC hierarchy.

1-3

1 Introduction

�������

	�
����
�

������

�
����

����

���

����

���������

��
��������

��
���
���

�����������

�����������

�����������

�����������

��������

�����

������������

����������������

���������� ����������

���

�	 ��
��	

������

	�
����

�����

�����

��
�������
������������
�����������

�����������

����������

������������

����������������
�����������

�
���

��
���
���
�����

���������

����

1-4

Simulink® Real-Time™ C API

Simulink Real-Time C API
The Simulink Real-Time C API consists of a series of C functions that you can
call from a C or C++ application. This API is designed for multi-threaded
operation. The Simulink Real-Time C API DLL consists of C functions that
you can incorporate into a high-level language application. A user can use
an application written through either interface to load, run, and monitor an
Simulink Real-Time application without interacting with MATLAB. With
the Simulink Real-Time C API, you write the application in a high-level
language (such as C, C++, or Java®) that works with an Simulink Real-Time
application; this option requires that you are an experienced programmer.

The xpcapi.dll file contains the Simulink Real-Time C API dynamic link
library, which contains over 90 functions you can use to access the target
application. Because xpcapi.dll is a dynamic link library, your program can
use run-time linking rather than static linking at compile time. Accessing
the Simulink Real-Time C API DLL is beneficial when you are building
applications using development environments such as Microsoft Foundation
Class Library/Active Template Library (MFC/ATL), DLL, Win32 (non-MFS)
program and DLL, and console programs integrating with third-party product
APIs (for example, Altia®).

All custom Simulink Real-Time C API applications must link with the
xpcapi.dll file (Simulink Real-Time C API DLL). Also associated with the
dynamic link library is the xpcinitfree.c file. This file contains functions
that load and unload the Simulink Real-Time C API. You must build this file
along with the custom Simulink Real-Time C API application.

The Simulink Real-Time C API consists of blocking functions. For
communications between the host and target computer, a default timeout
of 5 seconds controls how long a target computer can take to communicate
with a host computer.

The documentation reflects the fact that the API is written in the C
programming language. However, the API functions are usable from other
languages and applications, such as C++ and Java.

1-5

1 Introduction

Note To write a non-C application that calls functions in the Simulink
Real-Time C API library, refer to the compiler documentation for a description
of how to access functions from a library DLL. You must follow these
directions to access the Simulink Real-Time C API DLL.

1-6

Required Products

Required Products
Refer to System Requirements for a list of the required Simulink Real-Time
products. In addition, you need the following products:

• Third-party Development Environment — To build a custom application
that references interfaces in the Simulink Real-Time API for the .NET
Framework, use a third-party development environment and compiler that
can interact with .NET. For example, the Windows PowerShell™, Microsoft
Visual Studio®, and the MATLAB environments.

• Third-Party Compiler — To build a custom application (.exe, DLL) that calls
functions from the Simulink Real-Time API libraries, use a third-party
compiler that generates code for Win32 systems. You can write client
applications that call these functions in another high-level language, such
as C#, C++, or C.

1-7

http://www.mathworks.com/products/xpctarget/requirements.html

1 Introduction

1-8

2

Simulink Real-Time API for
Microsoft .NET Framework

• “Using the Simulink® Real-Time™ API for .NET Framework” on page 2-2

• “Simulink® Real-Time™ .NET API Object Model” on page 2-4

• “Simulink® Real-Time™ API for .NET Framework Classes” on page 2-5

• “Simulink® Real-Time™ .NET API Usage” on page 2-8

• “Simulink® Real-Time™ .NET API Application Deployment” on page 2-10

2 Simulink® Real-Time™ API for Microsoft® .NET Framework

Using the Simulink Real-Time API for .NET Framework
The Simulink Real-Time API for .NET framework is a fully managed .NET
framework component. Although this framework is designed to work with
the Microsoft Visual Studio software, you can use it with other development
environments that support the .NET framework. This API is a fully
programmable tool set. It contains easy-to-use components and types that
enable you to quickly design Simulink Real-Time client applications. You can
use this API with a programming language that supports .NET technology.

In this section...

“Features and Benefits” on page 2-2

“xpcosc Client Applications” on page 2-3

“File Server Browser Client Application” on page 2-3

Features and Benefits
The Simulink Real-Time API for .NET framework includes the following
features and benefits:

• Microsoft Visual Studio design time

• Intuitive object model (modeled after the Simulink Real-Time system
environment)

• Simplified client model programming for asynchronous communication
with the target computer

The Simulink Real-Time .NET API provides multiple ways for you to interface
client side applications with target computers, including outside the MATLAB
environment. For example

• Visual instrumentation for your real-time application

• Custom applications to perform data observation, collection, and archiving

• Real-time application debugging from a remote client computer

• Calibration, test, and evaluation of real-time processes

• Real-time data analysis

2-2

Using the Simulink® Real-Time™ API for .NET Framework

• Batch processing and automation scripts, which can run in a shell
environment (such as PowerShell) or as a process console standalone
application (.exe file)

xpcosc Client Applications
The Simple Client Application with the .NET API example illustrates
how to use the Simulink Real-Time API for Microsoft .NET Framework to
create client applications to interface with the xpcosc model downloaded on
the target computer. This example provides two client applications:

• Example1— Illustrates a client application that runs on the host computer.
The client application provides a GUI through which you can enter the IP
address port of the target computer with which you want to connect. It
consists of the toolbox items:

- Buttons

- TextBoxes

- TrackBar

• Example2 — In addition to the same toolbox controls as Example 1, this
example also contains a chart that displays signals from the xpcosc target
application.

File Server Browser Client Application
The API Simulink Real-Time API for the .NET Framework has the following
example, located in:

matlabroot\toolbox\rtw\targets\xpc\api\xPCFrameworkSamples\FileSystemBrowser

This example illustrates how to use the Simulink Real-Time API for the .NET
Framework to create a file browser to browse folders and files on the target
computer file system. The application resides on the host computer and
connects to the target computer to browse its file system.

This is a C# application project developed with the Microsoft Visual Studio
2008 IDE. It illustrates how to build a standalone Simulink Real-Time
executable to connect to a target computer and a host computer. See the
Readme.txt file in the example folder for instructions on how to access and
build the example code.

2-3

2 Simulink® Real-Time™ API for Microsoft® .NET Framework

Simulink Real-Time .NET API Object Model
To develop solutions that use the Simulink Real-Time .NET API, you can
interact with the API objects in the Simulink Real-Time .NET API object
model. The object model corresponds to structure of the Simulink Real-Time
environment. The object model is hierarchical and straightforward. The
following is a conceptual view of the xPCTargetPC object.

�	 ���
���	

������ 	�
����
�

���� �������

�����������

�
����

����� ��
���
���

����������

2-4

Simulink® Real-Time™ API for .NET Framework Classes

Simulink Real-Time API for .NET Framework Classes
The Simulink Real-Time .NET API provides an expansive object model layer.
You should start your client model development on the following objects:

In this section...

“Mathworks.xPCTarget.Framework.xPCTargetPC” on page 2-5

“Mathworks.xPCTarget.Framework.xPCApplication” on page 2-6

“Mathworks.xPCTarget.Framework.xPCScopes” on page 2-6

“Mathworks.xPCTarget.Framework.xPCParameters” on page 2-6

“Mathworks.xPCTarget.Framework.xPCParameter” on page 2-6

“Mathworks.xPCTarget.Framework.xPCSignals” on page 2-7

“Mathworks.xPCTarget.Framework.xPCSignal” on page 2-7

“Mathworks.xPCTarget.Framework.xPCAppLogger” on page 2-7

Mathworks.xPCTarget.Framework.xPCTargetPC
The xPCTargetPC object represents the overall Simulink Real-Time
environment system. It is at the root level of the object model and exposes
information about the Simulink Real-Time session after connecting to your
target computer. It provides many class member functions that you use to
access information and manipulate its behavior.

The xPCTargetPC object principally supports a run-time user-driven mode
of execution. However, the xPCTargetPC type is also a .NET component
implementation that supports an optional developer-driven model of
execution, a design-time capability. You can integrate the design-time
capability with the Microsoft Visual Studio IDE. It supports creation and
management of the xPCTargetPC component. With this capability, you can
perform the following operations with xPCTargetPC components

• Drag and drop into the form design

• Property configuration

• Delete from the form design

2-5

2 Simulink® Real-Time™ API for Microsoft® .NET Framework

Design-time support includes a properties window in which
you can configure design-time members, code serialization, and
property-editing support with UI type editors. This supports enables
you to build Simulink Real-Time application quickly and effortlessly
by dragging the component and using its functionality as required.
For more information on using Microsoft Visual Studio .NET, see
http://msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx.

Mathworks.xPCTarget.Framework.xPCApplication
The xPCApplication object represents the Simulink Real-Time real-time
application that you generate from a Simulink model and download to
the target computer. The xPCApplication object exposes information and
properties of the target application. It also contains members you need to:

• Access application information

• Manipulate application behavior

• Return other objects such as child components of the application

Mathworks.xPCTarget.Framework.xPCScopes
The xPCScopes object represents a container or place holder to access and
interface with Simulink Real-Time scopes. This object enables advanced
signal data acquisition techniques. With this object, you can access child
objects related to scopes.

Mathworks.xPCTarget.Framework.xPCParameters
The xPCParameters object represents a container or place holder to access
application parameters. You can access xPCParameter objects with this
object.

Mathworks.xPCTarget.Framework.xPCParameter
The xPCParameter object represents a specific application parameter, which
represents a run-time parameter of a specific block. With this object, you can
access information related to the block parameter. With this object, you can
also tune parameter values during simulation.

2-6

http://msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx

Simulink® Real-Time™ API for .NET Framework Classes

Mathworks.xPCTarget.Framework.xPCSignals
The xPCSignals object represents a container or place holder to access the
application signals. With this object, you can access xPCSignal objects.

Mathworks.xPCTarget.Framework.xPCSignal
The xPCSignal object represents a specific application signal, which
represents the port signal of a non-graphical block output. With this object,
you can access information related to the signal. It also allows you to monitor
signal behavior during simulation.

Mathworks.xPCTarget.Framework.xPCAppLogger
The xPCAppLogger object represents a place holder for logging objects. It
contains members that return specific logging objects.

2-7

2 Simulink® Real-Time™ API for Microsoft® .NET Framework

Simulink Real-Time .NET API Usage
This topic presents the Simulink Real-Time API for .NET framework
reference using the C# language and the Microsoft Visual Studio environment.
At a minimum:

• Use the xPCTargetPC component in the Visual Studio environment. This
addition provides convenient design-time features. To do this:

1 Add the xPCTargetPC component to the Visual Studio Toolbox.

2 To use this component, create a Windows application.

3 Add an xPCTargetPC object to the application form by dragging an
xPCTargetPC control from the Toolbox window to the design surface.

The xPCTargetPC control makes available in the Visual Studio
Properties window its data and appearance properties. You can click
the xPCTargetPC control in the design surface to explore and customize
the xPCTargetPC properties.

• Add a reference for xPCFramework.dll to your project (for example, to
create a console application), include the following in your code. Doing so
enables you to access the types available from the Simulink Real-Time
environment

using MathWorks.xPCTarget.FrameWork;

• To use the design-time capability of the Microsoft Visual Studio
environment, copy the xpcapi.dll file to the same folder as the application
executable. You also need this file to execute the application.

The Simulink Real-Time library has a 32-bit and a 64-bit version of the
xpcapi.dll.

2-8

Simulink® Real-Time™ .NET API Usage

Note On 64-bit platforms, if you build a 64–bit target application in the
Microsoft Visual Studio environment, and want to use the xPCTargetPC
nonvisual component; place the 32-bit version of xpcapi.dll in the solution
folder and place the 64-bit version of xpcapi.dll in the application folder
that contains the .exe file. Placing the 32-bit version of xpcapi.dll in
the solution folder enables you to use the design time capabilities of the
Visual Studio environment.

• Do not test communication between host and target computers
(xPCTargetPC.Ping method) until you have connected to the target
computer (xPCTargetPC.Connect method).

Note Be sure to disconnect the target computer from the host computer
before starting .NET client applications. A target computer can be
connected to only one host computer at a time. You can use slrtpingtarget
to verify connectivity; this function disconnects from the target computer
when done.

2-9

2 Simulink® Real-Time™ API for Microsoft® .NET Framework

Simulink Real-Time .NET API Application Deployment
This topic describes guidelines when distributing your Simulink Real-Time
API for Microsoft .NET Framework GUI application:

• You must have an Simulink Real-Time standalone mode license to deploy
or distribute your GUI application.

• When you build your application, the Visual Studio software builds the
application files for your executable, including a *.exe file. Include these
files in the same folder when deploying or distributing your application.

• Keep in mind the relationship between the GUI application,
xPCFramework.dll, and xpcapi.dll. In particular, the GUI application
depends on xPCFramework.dll, which depends on xPCFramework.dll.

Be sure to provide the version of xpcapi.dll (32-bit or a 64-bit) for which
your application was built.

2-10

3

Simulink Real-Time API for
C

• “Using the C API” on page 3-2

• “Visual C Console Application” on page 3-4

3 Simulink® Real-Time™ API for C

Using the C API
Keep the following guidelines in mind when you begin to write Simulink
Real-Time C API applications with the Simulink Real-Time C API DLL:

• Carefully match the function data types as documented in the function
reference. For C, the API includes a header file that matches the data types.

• To write a non-C application that calls functions in the Simulink Real-Time
C API library, refer to the compiler documentation for a description of how
to access functions from a library DLL. You must follow these directions to
access the Simulink Real-Time C API DLL

• If you want to rebuild the model (sf_car_xpc), or otherwise use the
MATLAB environment, you must have Simulink Real-Time Version 2.0 or
later. To determine the version of Simulink Real-Time you are currently
using, at the MATLAB command line, type

slrtlib

This opens the Simulink Real-Time Simulink blocks library. The version of
Simulink Real-Time should be at the bottom of the window.

• You can work with Simulink Real-Time applications with either MATLAB
or an Simulink Real-Time C API application. If you are working with an
Simulink Real-Time application simultaneously with a MATLAB session
interacting with the target, keep in mind that only one application can
access the target computer at a time. To move from the MATLAB session
to your application, in the MATLAB Command Window, type

close(slrt)

This frees the connection to the target computer for use by your Simulink
Real-Time C API application. Conversely, you will need to quit your
application, or do the equivalent of calling the function xPCClosePort, to
access the target from a MATLAB session.

• The Simulink Real-Time C API functions that communicate with the target
computer check for timeouts during communication. If a timeout occurs,
these functions will exit with the global variable xPCError set to either
ECOMTIMEOUT (serial connections) or ETCPTIMEOUT (TCP/IP connections).

3-2

Using the C API

Use the xPCGetLoadTimeOut and xPCSetLoadTimeOut functions to get and
set the timeout values, respectively.

There are a few things that are not covered in “C API Structures and
Functions — Alphabetical List” for the individual functions, because they
are common to almost all the functions in the Simulink Real-Time C API.
These are

• Almost every function (except xPCOpenSerialPort, xPCOpenTcpIpPort,
xPCGetLastError, and xPCErrorMsg) has as one of its parameters the
integer variable port. This variable is returned by xPCOpenSerialPort and
xPCOpenTcpIpPort, and should be used to represent the communications
link with the target computer.

• Almost every function (except xPCGetLastError and xPCErrorMsg) sets a
global error value in case of error. The application obtains this value by
calling the function xPCGetLastError, and retrieves a descriptive string
about the error by using the function xPCErrorMsg. Although the actual
error values are subject to change, a zero value typically means that the
operation completed without producing an error, while a nonzero value
typically signifies an error condition. Note also that the library resets the
error value every time an API function is called; therefore, your application
should check the error status as soon as possible after a function call.

Some functions also use their return values (if applicable) to signify that
an error has occurred. In these cases as well, you can obtain the exact
error with xPCGetLastError.

3-3

3 Simulink® Real-Time™ API for C

Visual C Console Application
This topic shows how to use the Simulink Real-Time C API to create a Win32
console application written in C. You can use this example as a template to
write your own application.

In this section...

“Target Application” on page 3-4

“Folders and Files” on page 3-4

“Building the Simulink® Real-Time™ Application” on page 3-6

“Creating a Visual C Application” on page 3-6

“Building a Visual C Application” on page 3-9

“Running an Simulink® Real-Time™ Visual C API Application” on page 3-10

“Using the Simulink® Real-Time™ C API Application” on page 3-10

“C Code for sf_car_xpc.c” on page 3-17

Target Application
Before you start, you should have an existing Simulink Real-Time application
that you want to load and run on a target computer. The following topics
use the target application sf_car_xpc.dlm, built from the Simulink model
sf_car_xpc, which models an automatic transmission control system. The
automatic transmission control system consists of modules that represent the
engine, transmission, and vehicle, with an additional logic block to control the
transmission ratio. User inputs to the model are in the form of throttle (%)
and brake torque (pound-foot). You can control the target application through
MATLAB with the Simulink External Mode interface, or through a custom
Simulink Real-Time C API application.

Folders and Files
This folder contains the C source of a Win32 console application that serves
as an example for using the Simulink Real-Time C API. The sf_car_xpc
files are in the folder:

matlabroot\toolbox\rtw\targets\xpc\api

3-4

Visual C Console Application

Filename Description

VisualBasic\Models\-
sf_car_xpc\sf_car_xpc

Simulink model for use with Simulink
Real-Time

VisualBasic\Models\-
sf_car_xpc\sf_car_xpc.dlm

Target application compiled from Simulink
model

VisualC\sf_car_xpc.dsp Project file for API application

sf_car_xpc.c Source code for API application

VisualC\sf_car_xpc.exe Compiled API application

VisualBasic\Models\-
xpcapi.dll

Simulink Real-Time C API functions for
supported programming languages. Place
this file in one of the following, in order of
preference:

• Folder from which the application is
loaded

• Windows system folder

The Simulink Real-Time C API files are in the folder:

matlabroot\toolbox\rtw\targets\xpc\api

You will need the files listed below for creating your own API application
with Microsoft Visual C++®.

Filename Description

xpcapi.h Mapping of data types between Simulink Real-Time
C API and Visual C

xpcapiconst.h Symbolic constants for using scope, communication,
and data-logging functions

xpcinitfree.c C functions to upload API from xpcapi.dll

xpcapi.dll Simulink Real-Time C API functions for supported
programming languages

3-5

3 Simulink® Real-Time™ API for C

Building the Simulink Real-Time Application
These tutorials use the prebuilt Simulink Real-Time application:

matlabroot\toolbox\rtw\targets\
xpc\api\VisualC\sf_car_xpc.dlm

You can rebuild this application for your example:

1 Create a new folder under your MathWorks® folder. For example,

D:\mwd\sf_car_xpc2

2 Create a Simulink model and save to this folder. For example,

sf_car_xpc2

3 Build the target application with Simulink Coder™ and Microsoft Visual
C++. The target application file sf_car_xpc2.dlm is created.

Using Another C/C++ Compiler
These tutorials describe how to create and build C applications using
Microsoft Visual C++. However, to build an Simulink Real-Time C API
application, you can use other C/C++ compilers, provided they are capable
of generating a Win32 application. You will need to link and compile the
Simulink Real-Time C API application along with xpcinitfree.c to generate
the executable. The file xpcinitfree.c contains the definitions for the files
in the Simulink Real-Time C API and is located:

matlabroot\toolbox\rtw\targets\xpc\api

Creating a Visual C Application
This tutorial describes how to create a Visual C application. It is assumed
that you know how to write C applications. Of particular note when writing
Simulink Real-Time C API applications,

• Call the function xPCInitAPI at the start of the application to load the
functions.

• Call the function xPCFreeAPI at the end of the application to free the
memory allocated to the functions.

3-6

Visual C Console Application

To create a C application with a program such as Microsoft Visual C++,

1 From the previous tutorial, change folder to the new folder. This is your
working folder. For example,

D:\mwd\sf_car_xpc2

2 Copy the files xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcintfree.c
to the working folder. For example,

D:\mwd\sf_car_xpc2

3 Click the Start button, choose the All Programs option, and choose the
Microsoft Visual C++ entry. Select theMicrosoft Visual C++ option.

The Microsoft Visual C++ application is displayed.

4 From the File menu, click New.

5 At the New dialog box, click the File tab.

6 In the left pane, select C++ Source File. In the right, enter the name
of the file. For example, sf_car_xpc.c. Select the folder. For example,
C:\mwd\sf_car_xpc2.

7 Click OK to create this file.

8 Enter your code in this file. For example, you can enter the contents of
sf_xpc_car.c into this file.

9 From the File menu, click New.

10 At the New dialog box, click the Projects tab.

11 In the left pane, select Win32 Console Application. On the right, enter
the name of the project. For example, sf_car_xpc. Select the working
folder from step 1. For example, C:\mwd\sf_car_xpc2.

12 To create the project, click OK.

A Win32 Console Application dialog box is displayed.

13 To create an empty project, select An empty project.

3-7

3 Simulink® Real-Time™ API for C

14 Click Finish.

15 To confirm the creation of an empty project, click OK at the following
dialog box.

16 To add the C file you created in step 7, from the Project menu, select the
Add to Project option and select Files.

17 Browse for the C file you created in step 7. For example,

D:\mwd\sf_car_xpc2\sf_car_xpc.c

Click OK.

18 Browse for the xpcinitfree.c file. For example, D:\mwd\xpcinitfree.c.
Click OK.

Note The code for linking in the functions in xpcapi.dll is in the file
xpcinitfree.c. You must compile and link xpcinitfree.c with your
custom application for it to load xpcapi.dll at execution time.

19 If you did not copy the files xpcapi.h, xpcapi.dll, and xpcapiconst.h
into the working or project folder, you should either copy them now, or
also add these files to the project.

20 From the File menu, click Save Workspace.

When you are ready to build your C application, go to “Building a Visual
C Application” on page 3-9.

Placing the Target Application File in a Different Folder
The sf_car_xpc.c file assumes that the Simulink Real-Time application file
sf_car_xpc.dlm is in the same folder as sf_car_xpc.c. If you move that
target application file (sf_car_xpc.dlm) to a new location, change the path
to this file in the API application (sf_car_xpc.c) and recompile the API
application. The relevant line in sf_car_xpc.c is in the function main(),
and looks like this:

3-8

Visual C Console Application

xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

The second argument (".") in the call to xPCLoadApp is the path to
sf_car_xpc.dlm. The "." indicates that the files sf_car_xpc.dlm and
sf_car_xpc.c are in the same folder. If you move the target application,
enter its new path and rebuild the Simulink Real-Time C API application.

Building a Visual C Application
This tutorial describes how to build the Visual C application from the
previous tutorial, or to rebuild the example executable sf_car_xpc.exe,
using Microsoft Visual C++:

1 To build your own application using the Simulink Real-Time C API, copy
the files xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcinitfree.c into
the working or project folder.

2 If Microsoft Visual C++ is not already running, click the Start button,
choose the All Programs option, and choose the Microsoft Visual C++
option.

3 From the File menu, click Open.

The Open dialog box is displayed.

4 Use the browser to select the project file for the application you want to
build. For example, sf_car_xpc.dsp.

5 If a corresponding workspace file (for example, sf_car_xpc.dsw) exists for
that project, a dialog box prompts you to open that workspace instead.
Click OK.

6 Build the application for the project. From the Build menu, select either
the Build project_name.exe or Rebuild All option.

Microsoft Visual C++ creates a file named project_name.exe, where
project_name is the name of the project.

When you are ready to run your Visual C Application, go to “Running an
Simulink® Real-Time™ Visual C API Application” on page 3-10.

3-9

3 Simulink® Real-Time™ API for C

Running an Simulink Real-Time Visual C API
Application
Before starting the API application sf_car_xpc.exe, verify the following:

• The file xpcapi.dll must either be in the same folder as the Simulink
Real-Time C API application executable, or it must be in the Windows
system folder (typically C:\windows\system or C:\winnt\system32) for
global access. The Simulink Real-Time C API application depends on this
file, and will not run if the file is not found. The same is true for other
applications you write using Simulink Real-Time C API functions.

• The compiled target application sf_car_xpc.dlm must be in the same
folder as the Simulink Real-Time C API executable. Do not move this file
out of this folder. Moving the file requires you to change the path to the
target application in the API application and recompile, as described in
“Building a Visual C Application” on page 3-9.

Using the Simulink Real-Time C API Application
To run a Simulink Real-Time C API application, you must have a working
target computer running at least Simulink Real-Time Version 2.0 (Release
13).

This tutorial assumes that you are using the Simulink Real-Time C API
application sf_car_xpc.exe that comes with Simulink Real-Time. In
turn, sf_car_xpc.exe expects that the Simulink Real-Time application is
sf_car_xpc.dlm.

If you are going to run a version of sf_car_xpc.exe that you compiled yourself
using the sf_car_xpc.c code that comes with Simulink Real-Time, you can
run that application instead. Verify the following files are in the same folder:

• sf_car_xpc.exe, the Simulink Real-Time C API executable

• sf_car_xpc.dlm, the Simulink Real-Time application to be loaded to the
target computer

• xpcapi.dll, the Simulink Real-Time C API dynamic link library

If you copy this file to the Windows system folder, you do not need to
provide this file in the same folder.

3-10

Visual C Console Application

How to Run the sf_car_xpc Executable

1 Create an Simulink Real-Time boot disk with a serial or network
communication. If you use serial communications, set the baud rate to
115200. Otherwise, create the boot disk as directed in Simulink Real-Time
Getting Started.

2 Start the target computer with the Simulink Real-Time boot disk.

The target computer displays messages like the following in the top
rightmost message area.

System: Host-Target Interface is RS232 (COM1/2)

or

System: Host-Target Interface is TCP/IP (Ethernet)

3 If you have downloaded target applications to the target computer through
MATLAB, in the MATLAB window, type

close(slrt)

This command disconnects MATLAB from the target computer and leaves
the target computer ready to connect to another client.

4 On the host computer, open a DOS window. Change folder to:

C:\matlabroot\toolbox\rtw\targets\xpc\api\VisualC

If you are running your own version of sf_car_xpc.exe, change to the
folder that contains the executable and Simulink Real-Time application.
For example,

D:\mwd\sf_car_xpc2

5 From that DOS window, enter the command to start the example
application on the host computer and download the target application to
the target computer.

The syntax for the example command is

3-11

3 Simulink® Real-Time™ API for C

sf_car_xpc {-t IpAddress:IpPort|-c COMport}

If you set up the Simulink Real-Time boot disk to use TCP/IP, then give
the target computer’s IP address and IP port as arguments to sf_car_xpc,
along with the option -t. For example, at the DOS prompt, type

sf_car_xpc -t 192.168.0.1:22222

If you set up the Simulink Real-Time boot disk to use RS-232, give the
serial port number as a command-line option. Note that indexing of serial
ports starts from 0 instead of 1. For example, if you are using serial
communication from COM port 1 on the host computer, type

sf_car_xpc -c 0

On the host computer, the example application displays the following
message:

* Simulink Real-Time API Demo: sf_car_xpc. *

* *

* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *

Application sf_car_xpc loaded. SampleTime 0.001 StopTime: -1

R Br Th G VehSpeed VehRPM

- ---- -- - ---------- ---------

N 0 0 0 0.000 1000.000

The relevant line here is the last one, which displays the status of the
application. The headings are as follows:

R The status of the target application: R if running, N if
stopped

Br The brake torque; legal values range from 0 to 4000

Th The throttle as a percentage (0 - 100) of the total

G Gear the vehicle is in (ranges between 1 and 4)

VehSpeed Speed of the vehicle in miles per hour

VehRPM Revolutions per minute of the vehicle engine (0 to 6000)

3-12

Visual C Console Application

From this screen, various keystrokes control the target application. The
following list summarizes these keys:

Key Action

s Start or stop the application, depending on whether
the application is active or not.

T Increase the throttle by 1 (does not go above 100).

t Decrease the throttle by 1 (does not go below 0).

B Increase the brake value by 20 (does not go above
4000).

b Decrease the brake value by 20 (does not go below 0).

Q or Ctrl+C Quit the application.

Note Note that a positive value for the brake automatically sets the
throttle value to 0, and a positive value for the throttle automatically sets
the brake value to 0.

3-13

3 Simulink® Real-Time™ API for C

The target computer displays the following messages and three scopes.

6 Hold down the Shift key and hold down T until the value of Th reaches 100.

3-14

Visual C Console Application

7 Press s to start the application.

In Scope 1, S1 shows the throttle rising to a maximum value of 100 and the
vehicle speed S13 gradually increasing. In scope 2, S4 shows the vehicle
RPM. Notice the changes in the vehicle RPM as the gears shift from first to
fourth gear as displayed in the numerical Scope 3.

3-15

3 Simulink® Real-Time™ API for C

8 When you are done testing the example application, type Q or Ctrl+C.

The example application is disconnected from the target computer, so you
can reconnect to MATLAB.

3-16

Visual C Console Application

C Code for sf_car_xpc.c
This section contains the C code for the sf_car_xpc.c application:

/* File: sf_car_xpc.c

* Abstract: Demonstrates the use of the Simulink Real-Time C-API in Human-Machine

* interaction. This file generates a Win32 Console application,

* which when invoked loads the sf_car_xpc.dlm compiled application

* on to the Simulink Real-Time PC.

*

* To build the executable, use the Visual C/C++ project

* sf_car_xpc.dsp.

*

* Copyright 2000-2004 The MathWorks, Inc.

*/

/* Standard include files */

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <ctype.h>

#include <conio.h>

#include <windows.h>

/* Simulink Real-Time C-API specific includes */

#include "xpcapi.h"

#include "xpcapiconst.h"

#define SERIAL 0

#define TCPIP 1

/* max and min are defined by some compilers, so we wrap them in #ifndef's */

#ifndef max

#define max(a, b) (((a) > (b)) ? (a) : (b))

#endif

#ifndef min

#define min(a, b) (((a) < (b)) ? (a) : (b))

#endif

/* Global Variables */

int mode = TCPIP, comPort = 0;

3-17

3 Simulink® Real-Time™ API for C

int port;

int thrPID, brakePID, rpmSID, speedSID, gearSID;

char *ipAddress, *ipPort, *pathToApp = NULL;

/* Function prototypes */

double getParam(int parIdx);

void setParam(int parIdx, double parValue);

void findParam(char *block, char *param, int *id);

void findSignal(char *sig, int *id);

void Usage(void);

void cleanUp(void);

void checkError(char *str);

void processKeys(void);

void parseArgs(int argc, char *argv[]);

int str2Int(char *str);

/* Function: main ==

* Abstract: Main function for the sf_car_xpc demo */

int main(int argc, char *argv[]) {

printf("\n"

"*---*\n"

"* Simulink Real-Time API Demo: sf_car_xpc. *\n"

"* *\n"

"* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *\n"

"*---*\n"

"\n");

parseArgs(argc, argv);

atexit(cleanUp);

/* Initialize the API */

if (xPCInitAPI()) {

fprintf(stderr, "Could not load api\n");

return -1;

}

if (mode == SERIAL)

port = xPCOpenSerialPort(comPort, 0);

else if (mode == TCPIP)

3-18

Visual C Console Application

port = xPCOpenTcpIpPort(ipAddress, ipPort);

else {

fprintf(stderr, "Invalid communication mode\n");

exit(EXIT_FAILURE);

}

checkError("PortOpen: ");

xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

printf("Application sf_car_xpc loaded, SampleTime: %g StopTime: %g\n\n",

xPCGetSampleTime(port), xPCGetStopTime(port));

checkError(NULL);

findParam("Throttle", "Value", &thrPID);

findParam("Brake", "Value", &brakePID);

findSignal("Engine/rpm", &rpmSID);

findSignal("Vehicle/mph", &speedSID);

findSignal("shift_logic/p1", &gearSID);

processKeys(); /* Heart of the application */

if (xPCIsAppRunning(port)) {

xPCStopApp(port);

}

return 0;

} /* end main() */

/* Function: processKeys ===

* Abstract: This function reads and processes the keystrokes typed by the

* user and takes action based on them. This function runs for most

* of the program life. */

void processKeys(void) {

int c = 0;

double throttle, brake;

throttle = getParam(thrPID);

brake = getParam(brakePID);

fputs("\nR Br Th G VehSpeed VehRPM \n", stdout);

fputs("- ---- -- - ---------- -------- \n", stdout);

while (1) {

if (_kbhit()) {

3-19

3 Simulink® Real-Time™ API for C

c = _getch();

switch (c) {

case 't':

if (throttle)

setParam(thrPID, --throttle);

break;

case 'T':

if (brake)

setParam(brakePID, (brake = 0));

if (throttle < 100)

setParam(thrPID, ++throttle);

break;

case 'b':

setParam(brakePID, (brake = max(brake - 200, 0)));

if (brake)

setParam(thrPID, (throttle = 0));

break;

case 'B':

if (throttle)

setParam(thrPID, (throttle = 0));

setParam(brakePID, (brake = min(brake + 200, 4000)));

break;

case 's':

case 'S':

if (xPCIsAppRunning(port)) {

xPCStopApp(port); checkError(NULL);

} else {

xPCStartApp(port); checkError(NULL);

}

break;

case 'q':

case 'Q':

return;

break;

default:

fputc(7, stderr);

break;

}

} else {

Sleep(50);

3-20

Visual C Console Application

}

printf("\r%c %4d %3d %1d %10.3f %10.3f",

(xPCIsAppRunning(port) ? 'Y' : 'N'),

(int)brake, (int)throttle,

(int)xPCGetSignal(port, gearSID),

xPCGetSignal(port, speedSID),

xPCGetSignal(port, rpmSID));

}

} /* end processKeys() */

/* Function: Usage ===

* Abstract: Prints a simple usage message. */

void Usage(void) {

fprintf(stdout,

"Usage: sf_car_xpc {-t IPAddress:IpPort|-c num}\n\n"

"E.g.: sf_car_xpc -t 192.168.0.1:22222\n"

"E.g.: sf_car_xpc -c 1\n\n");

return;

} /* end Usage() */

/* Function: str2Int ===

* Abstract: Converts the supplied string str to an integer. Returns INT_MIN

* if the string is invalid as an integer (e.g. "123string" is

* invalid) or if the string is empty. */

int str2Int(char *str) {

char *tmp;

int tmpInt;

tmpInt = (int)strtol(str, &tmp, 10);

if (*str == '\0' || (*tmp != '\0')) {

return INT_MIN;

}

return tmpInt;

} /* end str2Int */

/* Function: parseArgs ===

* Abstract: Parses the command line arguments and sets the state of variables

* based on the arguments. */

void parseArgs(int argc, char *argv[]) {

if (argc != 3) {

fprintf(stderr, "Insufficient command line arguments.\n\n");

3-21

3 Simulink® Real-Time™ API for C

Usage();

exit(EXIT_FAILURE);

}

if (strlen(argv[1]) != 2 ||

strchr("-/", argv[1][0]) == NULL ||

strchr("tTcC", argv[1][1]) == NULL) {

fprintf(stderr, "Unrecognized Argument %s\n\n", argv[1]);

Usage();

exit(EXIT_FAILURE);

}

mode = tolower(argv[1][1]) == 'c' ? SERIAL : TCPIP;

if (mode == SERIAL) {

int tmpInt;

if ((tmpInt = str2Int(argv[2])) > INT_MIN) {

comPort = tmpInt;

} else {

fprintf(stderr, "Unrecognized argument %s\n", argv[2]);

Usage();

}

} else {

char *tmp;

ipAddress = argv[2];

if ((tmp = strchr(argv[2], ':')) == NULL) {

/* memory need not be freed as it is allocated only once, will *

* hang around till app ends. */

if ((ipPort = malloc(6 * sizeof(char))) == NULL) {

fprintf(stderr, "Unable to allocate memory");

exit(EXIT_FAILURE);

}

strcpy(ipPort, "22222");

} else {

*tmp = '\0';

ipPort = ++tmp;

}

}

return;

} /* end parseArgs() */

/* Function: cleanUp ===

* Abstract: Called at program termination to exit in a clean way. */

3-22

Visual C Console Application

void cleanUp(void) {

xPCClosePort(port);

xPCFreeAPI();

return;

} /* end cleanUp() */

/* Function: checkError ==

* Abstract: Checks for error by calling xPCGetLastError(); if an error is

* found, prints the error message and exits. */

void checkError(char *str) {

char errMsg[80];

if (xPCGetLastError()) {

if (str != NULL)

fputs(str, stderr);

xPCErrorMsg(xPCGetLastError(), errMsg);

fputs(errMsg, stderr);

exit(EXIT_FAILURE);

}

return;

} /* end checkError() */

/* Function: findParam ===

* Abstract: Wrapper function around the xPCGetParamIdx() API call. Also

* checks to see if the parameter is not found, and exits in that

* case. */

void findParam(char *block, char *param, int *id) {

int tmp;

tmp = xPCGetParamIdx(port, block, param);

if (xPCGetLastError() || tmp == -1) {

fprintf(stderr, "Param %s/%s not found\n", block, param);

exit(EXIT_FAILURE);

}

*id = tmp;

return;

} /* end findParam() */

/* Function: findSignal ==

* Abstract: Wrapper function around the xPCGetSignalIdx() API call. Also

* checks to see if the signal is not found, and exits in that

* case. */

3-23

3 Simulink® Real-Time™ API for C

void findSignal(char *sig, int *id) {

int tmp;

tmp = xPCGetSignalIdx(port, sig);

if (xPCGetLastError() || tmp == -1) {

fprintf(stderr, "Signal %s not found\n", sig);

exit(EXIT_FAILURE);

}

*id = tmp;

return;

} /* end findSignal() */

/* Function: getParam ==

* Abstract: Wrapper function around the xPCGetParam() API call. Also checks

* for error, and exits if an error is found. */

double getParam(int parIdx) {

double p;

xPCGetParam(port, parIdx, &p);

checkError("GetParam: ");

return p;

} /* end getParam() */

/* Function: setParam ==

* Abstract: Wrapper function around the xPCSetParam() API call. Also checks

* for error, and exits if an error is found. */

void setParam(int parIdx, double parValue) {

xPCSetParam(port, parIdx, &parValue);

checkError("SetParam: ");

return;

} /* end setParam() */

/** EOF sf_car_xpc.c **/

3-24

4

Simulink Real-Time .NET
API Examples

4 Simulink® Real-Time™ .NET API Examples

Visual Basic GUI Using .NET
To help you better understand and quickly begin to use .NET API
functions to create custom GUI applications, the Simulink Real-Time
environment provides a number of API examples and scripts in the
matlabroot\toolbox\rtw\targets\xpc\api folder. This topic briefly
describes those examples and scripts.

The Microsoft Visual Basic® .NET example illustrates how to create a custom
GUI that connects to a target computer with a downloaded target application.
The solution file for this example is located in

matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo

• bin— Contains the executable for the Demo project and the xpcapi.dll file

• Demo.sln— Contains a solution file for the Demo project

The Demo.sln file contains the Visual Basic .NET files required to run the
windows form application. This example is a functional application that you
can use as a template to create your own custom GUIs.

In this section...

“Before Starting” on page 4-2

“Accessing the Demo Project Solution” on page 4-3

“Rebuilding the Demo Project Solution” on page 4-3

“Using the Demo Executable” on page 4-4

Before Starting
To use the Demo solution, you need

• A target computer running a current Simulink Real-Time kernel

• A host computer running the MATLAB software interface, connected to the
target computer via RS-232 or TCP/IP

• A target application loaded on the target computer

4-2

Visual Basic® GUI Using .NET

The Simulink Real-Time product ships with an executable version of the
example. If you want to rebuild the Demo solution, of if you want to write
your own custom GUIs like this one, you need Microsoft Visual Basic .NET
installed on the host computer.

Note The Simulink Real-Time software allows you to create applications,
such as GUIs, to interact with a target computer with .NET API functions.
“Visual Basic GUI Using .NET” on page 4-2 describes this in detail. To deploy
a GUI application to other host computer systems that do not have your
licensed copy of the Simulink Real-Time product, you need the Simulink
Real-Time standalone mode.

Accessing the Demo Project Solution
To access the Demo solution,

1 Copy the contents of the VBNET folder to a writable folder of your choice.

2 Change folder to the one that contains your copy of the Demo solution.

3 Double-click demo.sln.

The Microsoft Development Environment for Visual Basic application
starts.

4 In the Solution Explorer pane, double-click Form1.vb to display the
Demo solution form.

The form is displayed. You can inspect the layout of the example.

5 To inspect the form code, select the View menu Code option.

The Visual Basic code for the form is displayed.

Rebuilding the Demo Project Solution
To rebuild the Demo solution,

1 Double-click demo.sln.

4-3

4 Simulink® Real-Time™ .NET API Examples

The Microsoft Development Environment for Visual Basic application
starts.

2 Select the Build menu Build Solution option.

Using the Demo Executable
To use the Demo solution executable,

1 Change folder to the one that contains your copy of the Demo solution.

2 Change folder to the bin folder.

3 Double-click Demo1.exe.

The GUI is displayed.

4-4

5

Simulink Real-Time API
Reference for Microsoft
.NET Framework

5 Simulink® Real-Time™ API Reference for Microsoft® .NET Framework

Simulink Real-Time API for Microsoft .NET Framework —
Alphabetical List

Namespace: MathWorks.xPCTarget.FrameWork

5-2

xPCFileScopeCollection.Add

Purpose Create xPCFileScope object with next available scope ID as key

Syntax public xPCFileScope Add()
public xPCFileScope Add(int ID)
public IList<xPCFileScope> Add(int[] arrayOfIDs)
IList

Description Class: xPCFileScopeCollection Class

Method

Syntax Language: C#

public xPCFileScope Add() creates xPCFileScope object with the
next available scope ID as key. It then adds xPCFileScope object to
xPCFileScopeCollection object.

public xPCFileScope Add(int ID) creates xPCFileScope object with
ID as key. ID is 32-bit integer that specifies an ID for the scope object.

public IList<xPCFileScope> Add(int[] arrayOfIDs) creates an
IList of xPCFileScope objects with an array of IDs as keys. arrayOfIDs
is an array of 32-bit integers that specifies an array of IDs for scope
objects.

5-3

xPCFileScopeSignalCollection.Add

Purpose Add signals to file scope

Syntax public xPCFileScopeSignal Add(xPCSignal signal)
public xPCFileScopeSignal Add(string blkPath)
public xPCFileScopeSignal Add(int sigId)
public IList<xPCFileScopeSignal> Add(int[] sigIds)

Description Class: xPCFileScopeSignalCollection Class

Method

Syntax Language: C#

public xPCFileScopeSignal Add(xPCSignal signal) adds signals
to the file scope. It creates an xPCFileScopeSignal object with signal.
signal is the xPCSignal object that represents the actual signal. This
method returns a file scope signal object of type xPCFileScopeSignal.

public xPCFileScopeSignal Add(string blkPath) adds signal
to the file scope. It creates an xPCFileScopeSignal object that
blkPath specifies. blkPath is a string that specifies the signal name
(block path). This method returns a file scope signal object of type
xPCFileScopeSignal.

public xPCFileScopeSignal Add(int sigId) adds signals to the file
scope. It creates an xPCFileScopeSignal object specified with sigId.
sigId is a 32-bit integer that represents the actual signal. This method
returns a file scope signal object of type xPCFileScopeSignal.

public IList<xPCFileScopeSignal> Add(int[] sigIds) adds
signals to the file scope. It creates an IList of xPCFileScopeSignal
objects, one for each signal in the array of IDs. sigIds is an array of
32-bit integers that specifies an array of IDs that represent the actual
signals. This method returns an ILIST of xPCFileScopeSignal objects.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-4

xPCHostScopeCollection.Add

Purpose Create xPCHostScope object with next available scope ID as key

Syntax public xPCHostScope Add()
public xPCHostScope Add(int ID)
public IList<xPCHostScope> Add(int[] arrayOfIDs)

Description Class: xPCHostScopeCollection Class

Method

Syntax Language: C#

public xPCHostScope Add() creates xPCHostScope object with
the next available scope ID as key. It then adds an xPCHostScope
object to xPCHostScopeCollection object. This method returns an
xPCHostScopeObject object.

public xPCHostScope Add(int ID) creates xPCHostScope object with
ID as key. ID is 32-bit integer that specifies an ID for the scope object.
This method returns an xPCHostScopeObject object.

public IList<xPCHostScope> Add(int[] arrayOfIDs) creates
an ILIST of xPCHostScope objects with an array of IDs as keys.
arrayOfIDs is an array of 32-bit integers that specifies an array of
IDs for scope objects.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-5

xPCHostScopeSignalCollection.Add

Purpose Add signals to host scope

Syntax public xPCHostScopeSignal Add(xPCSignal signal)
public xPCHostScopeSignal Add(string blkpath)
public xPCHostScopeSignal Add(int sigId)
public IList<xPCHostScopeSignal> Add(int[] sigIds)

Description Class: xPCHostScopeSignalCollection Class

Method

Syntax Language: C#

public xPCHostScopeSignal Add(xPCSignal signal) adds signals
to the host scope. It creates xPCHostScopeSignal object with signal.
signal is the xPCSignal object that represents the actual signal. This
method returns an xPCHostScopeSignal object.

public xPCHostScopeSignal Add(string blkpath) adds signal
to the host scope. It creates an xPCHostScopeSignal object that
blkPath specifies. blkPath is a string that specifies the signal name
(block path). This method returns a host scope signal object of type
xPCHostScopeSignal.

public xPCHostScopeSignal Add(int sigId) adds signals to the
host scope. It creates an xPCHostScopeSignal object specified with
sigId. sigId is a 32-bit integer that represents the actual signal. This
method returns a host scope signal object of type xPCHostScopeSignal.

public IList<xPCHostScopeSignal> Add(int[] sigIds) adds
signals to the host scope. It creates an ILIST of xPCHostScopeSignal
objects, one for each signal in the array of IDs. sigIds is an array of
32-bit integers that specifies an array of IDs that represent the actual
signals. This method returns an ILIST of xPCHostScopeSignal objects.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-6

xPCTargetScopeCollection.Add

Purpose Create xPCTargetScope object

Syntax public xPCTargetScope Add()
public xPCTargetScope Add(int ID)
public IList<xPCTargetScope> Add(int[] arrayOfIDs)

Description Class: xPCTargetScopeCollection Class

Method

Syntax Language: C#

public xPCTargetScope Add() creates xPCTargetScope object with
the next available scope ID as key. It then adds xPCTargetScope
object to xPCTargetScopeCollection object. This method returns an
xPCTargetScope object.

public xPCTargetScope Add(int ID) creates xPCTargetScope object
with ID as key. ID is 32-bit integer that specifies an ID for the scope
object. This method returns an xPCTargetScope object.

public IList<xPCTargetScope> Add(int[] arrayOfIDs) creates
an ILIST of xPCTargetScope objects with an array of IDs as keys.
arrayOfIDs is an array of 32-bit integers that specifies an array of IDs
for scope objects. This method returns an ILIST of xPCTargetScope
objects.

5-7

xPCTargetScopeSignalCollection.Add

Purpose Create xPCTargetScopeSignal object

Syntax public xPCTgtScopeSignal Add(xPCSignal signal)
public xPCTgtScopeSignal Add(string blkPath)
public xPCTgtScopeSignal Add(int sigId)
public IList<xPCTgtScopeSignal> Add(int[] sigIds)

Description Class: xPCTargetScopeSignalCollection Class

Method

Syntax Language: C#

public xPCTgtScopeSignal Add(xPCSignal signal) creates
xPCTargetScopeSignal object with signal. It then adds
xPCTargetScopeSignal object to xPCTargetScopeSignalCollection
object. signal is of type xPCSignal. This method returns an
xPCTargetScopeSignal object.

public xPCTgtScopeSignal Add(string blkPath) adds signal to
the target scope. It creates an xPCTargetScopeSignal object that
blkPath specifies. blkPath is a string that specifies the signal name
(block path). This method returns a target scope signal object of type
xPCTgtScopeSignal.

public xPCTgtScopeSignal Add(int sigId) creates
xPCTargetScopeSignal object with sigId. It then adds
xPCTargetScopeSignal object to xPCTargetScopeSignalCollection
object. sigId is a 32-bit integer. This method returns an
xPCTargetScopeSignal object.

public IList<xPCTgtScopeSignal> Add(int[] sigIds) creates an
ILIST of xPCTargetScopeSignal objects with an array of IDs. sigIds is
an array of 32-bit integers that specifies an array of IDs for file scope
signal objects.

5-8

xPCTargetScopeSignalCollection.Add

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-9

xPCFileStream.Close

Purpose Close current stream

Syntax public void Close()

Description Class: xPCFileStream Class

Method

Syntax Language: C#

public void Close() close the current stream and releases the
resources (such as file handles) associated with it.

Exception Exception Condition

xPCException When problem occurs, query xPCException object
Reason property.

5-10

xPCTargetPC.Connect

Purpose Establish connection to target computer

Syntax public void Connect()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void Connect() establishes a connection to a remote target
computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException object
Reason property.

5-11

xPCTargetPC.ConnectAsync

Purpose Asynchronous request for target computer connection

Syntax public void ConnectAsync()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void ConnectAsync() begins an asynchronous request for a
target computer connection.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-12

xPCTargetPC.ConnectCompleted

Purpose Event when xPCTargetPC.ConnectAsync is complete

Syntax public event ConnectCompleted ConnectCompleted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event ConnectCompleted ConnectCompleted occurs when an
asynchronous connect operation is complete.

5-13

xPCTargetPC.Connected

Purpose Event after xPCTargetPC.Connect is complete

Syntax public event EventHandler Connected

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Connected occurs after a connect
operation is complete.

5-14

xPCTargetPC.Connecting

Purpose Event before xPCTargetPC.Connect starts

Syntax public event EventHandler Connecting

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Connecting occurs before connect
operation starts.

5-15

xPCFileInfo.CopyToHost

Purpose Copy file from target computer file system to host file system

Syntax public FileInfo CopyToHost(string HostDestFileName)

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public FileInfo CopyToHost(string HostDestFileName) copies
file, HostDestFileName, from target computer file system to new
location on host file system. HostDestFileName is a string that specifies
the full path name for the file.

Exception Exception Condition

ArgumentException HostDestFileName is empty, contains only
white spaces, or contains invalid characters.

ArgumentNull-
Exception

HostDestFileName is NULL reference.

NotSupported-
Exception

HostDestFileName contains a colon (:) in the
middle of the string.

PathTooLong-
Exception

The specified path, file name, or both in
HostDestFileName exceed the system-defined
maximum length. For example, on Windows
platforms, path names must be less than 248
characters. File names must be less than 260
characters.

SecurityException Caller does not have required permission.

UnauthorizedAccess-
Exception

System does not allow access to
HostDestFileName.

xPCException When problem occurs, query xPCException
object Reason property.

5-16

xPCFileInfo.Create

Purpose Create file in specified path

Syntax public xPCFileStream Create()

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public xPCFileStream Create() create file in specified path.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-17

xPCFileSystem.Create

Purpose Create folder

Syntax public xPCDirectoryInfo CreateDirectory(string path)

Description Class: xPCFileSystem Class

Method

Syntax Language: C#

public xPCDirectoryInfo CreateDirectory(string path) creates
folder on the target computer file system. path is a string that
specifies the full path name for the new folder. This method returns an
xPCDirectoryInfo object.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-18

xPCDirectoryInfo.Create

Purpose Create folder

Syntax public void Create()

Description Class: xPCDirectoryInfo Class

Method

Syntax Language: C#

public void Create() creates a folder.

5-19

xPCFileSystemInfo.Delete

Purpose Delete current file or folder

Syntax public abstract void Delete()

Description Class: xPCFileSystemInfo Class

Method

Syntax Language: C#

public abstract void Delete() deletes the current file or folder on
the target computer file system.

5-20

xPCDirectoryInfo.Delete

Purpose Delete empty xPCDirectoryInfo object

Syntax public override void Delete()

Description Class: xPCDirectoryInfo Class

Method

Syntax Language: C#

public override void Delete() deletes an empty xPCDirectoryInfo
object.

5-21

xPCFileInfo.Delete

Purpose Permanently delete file on target computer

Syntax public override void Delete()

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public override void Delete() permanently deletes files from the
target computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-22

xPCTargetPC.Disconnect

Purpose Disconnect from target computer

Syntax public void Disconnect()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void Disconnect() closes the connection to the target
computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-23

xPCTargetPC.DisconnectAsync

Purpose Asynchronous request to disconnect from target computer

Syntax public void DisconnectAsync()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void DisconnectAsync() begins an asynchronous request to
disconnect from the target computer.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-24

xPCTargetPC.DisconnectCompleted

Purpose Event when xPCTargetPC.DisconnectAsync is complete

Syntax public event DisconnectCompletedEventHandler DisconnectCompleted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event DisconnectCompletedEventHandler
DisconnectCompleted occurs when an asynchronous disconnect
operation is complete.

5-25

xPCTargetPC.Disconnected

Purpose Event after xPCTargetPC.Disconnect is complete

Syntax public event EventHandler Disconnected

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Disconnected occurs after a disconnect
operation is complete.

5-26

xPCTargetPC.Disconnecting

Purpose Event before xPCTargetPC.Disconnect starts

Syntax public event EventHandler Disconnecting

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Disconnecting occurs before a
disconnect operation starts.

5-27

xPCTargetPC.Dispose

Purpose Clean up used resources

Syntax public void Dispose()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void Dispose() cleans up used resources.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-28

xPCTargetPC.Disposed

Purpose Event after xPCTargetPC.Dispose is complete

Syntax public event EventHandler Disposed

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Disposed occurs after the disposal of
used resources is complete.

5-29

xPCFileSystem.GetCurrentDirectory

Purpose Current working folder for target application

Syntax public string GetCurrentDirectory()

Description Class: xPCFileSystem Class

Method

Syntax Language: C#

public string GetCurrentDirectory() gets the current working
folder of the target application. This method returns the current
working folder name as a string.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-30

xPCDataLoggingObject.GetData

Purpose Copy signal data from target computer

Syntax public double[] GetData()

Description Class: xPCDataLoggingObject Class

Method

Syntax Language: C#

public double[] GetData() copies logged data from the target
computer to the host computer.

5-31

xPCDataFileScSignalObject.GetData

Purpose Copy file scope signal data from target computer

Syntax public double[] GetData()

Description Class: xPCDataFileScSignalObject Class

Method

Syntax Language: C#

public double[] GetData() copies logged file scope signal data from
the target computer to the host computer.

5-32

xPCDataHostScSignalObject.GetData

Purpose Copy host scope signal data from target computer

Syntax public double[] GetData()

Description Class: xPCDataHostScSignalObject Class

Method

Syntax Language: C#

public double[] GetData() copies logged host scope signal data from
the target computer to the host computer.

5-33

xPCDataLoggingObject.GetDataAsync

Purpose Asynchronously copy signal data from target computer

Syntax public void GetDataAsync()
public void GetDataAsync(Object taskId)

Description Class: xPCDataLoggingObject Class

Method

Syntax Language: C#

public void GetDataAsync() asynchronously copies the logged data
from the target computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId
(user-defined object) when the method copies the logged data.

5-34

xPCDataFileScSignalObject.GetDataAsync

Purpose Asynchronously copy file scope signal data from target computer

Syntax public void GetDataAsync()
public void GetDataAsync(Object taskId)

Description Class: xPCDataFileScSignalObject Class

Method

Syntax Language: C#

public void GetDataAsync() asynchronously copies the file scope
signal logged data from the target computer without blocking the
calling thread.

public void GetDataAsync(Object taskId) receives taskId
(user-defined object) when the method copies the file scope signal logged
data. In other words, when the asynchronous operation is complete.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-35

xPCDataHostScSignalObject.GetDataAsync

Purpose Asynchronously copy host scope signal data from target computer

Syntax public void GetDataAsync()
public void GetDataAsync(Object taskId)

Description Class: xPCDataHostScSignalObject Class

Method

Syntax Language: C#

public void GetDataAsync() asynchronously copies the host scope
signal logged data from the target computer without blocking the
calling thread.

public void GetDataAsync(Object taskId) receives taskId
(user-defined object) when the method copies the host scope signal
logged data. In other words, when the asynchronous operation is
complete.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-36

xPCDataLoggingObject.GetDataCompleted

Purpose Event when xPCDataLoggingObject.GetDataAsync is complete

Syntax public event GetDataCompletedEventHandler GetDataCompleted

Description Class: xPCDataLoggingObject Class

Event

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted
occurs when the asynchronous copying of logged data is complete.

5-37

xPCDataFileScSignalObject.GetDataCompleted

Purpose Event when xPCDataFileScSignalObject.GetDataAsync is complete

Syntax public event GetFileScSignalDataCompletedEventHandler GetDataCompleted

Description Class: xPCDataFileScSignalObject Class

Event

Syntax Language: C#

public event GetFileScSignalDataCompletedEventHandler
GetDataCompleted occurs when the asynchronous copying of file scope
signal logged data is complete.

5-38

xPCDataHostScSignalObject.GetDataCompleted

Purpose Event when xPCDataHostScSignalObject.GetDataAsync is complete

Syntax public event GetDataCompletedEventHandler GetDataCompleted

Description Class: xPCDataHostScSignalObject Class

Event

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted
occurs when the asynchronous copying of host scope signal logged data
is complete.

5-39

xPCDirectoryInfo.GetDirectories

Purpose Subfolders of current folder

Syntax public xPCDirectoryInfo[] GetDirectories()

Description Class: xPCDirectoryInfo Class

Method

Syntax Language: C#

public xPCDirectoryInfo[] GetDirectories() returns the
subfolders of the current folder. This method returns the list of
subfolders as an xPCDirectoryInfo array.

5-40

xPCFileSystem.GetDrives

Purpose Drive names for logical drives on target computer

Syntax public xPCDriveInfo[] GetDrives()

Description Class: xPCFileSystem Class

Method

Syntax Language: C#

public xPCDriveInfo[] GetDrives() retrieves the drive names of
the logical drives on the target computer. This method returns an
xPCDriveInfo array.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-41

xPCDirectoryInfo.GetFiles

Purpose File list from current folder

Syntax public xPCFileInfo[] GetFiles()

Description Class: xPCDirectoryInfo Class

Method

Syntax Language: C#

public xPCFileInfo[] GetFiles() returns a file list from the current
folder. This method returns the list of files as an xPCFileInfo array.

5-42

xPCDirectoryInfo.GetFileSystemInfos

Purpose File system information for files and subfolders in folder

Syntax public xPCFileSystemInfo[] GetFileSystemInfos()

Description Class: xPCDirectoryInfo Class

Method

Syntax Language: C#

public xPCFileSystemInfo[] GetFileSystemInfos() returns an
array of strongly typed xPCFileSystemInfo entries. These entries
represent the files and subfolders in a folder.

5-43

xPCParameter.GetParam

Purpose Get parameter values from target computer

Syntax public double[] GetParam()

Description Class: xPCParameter Class

Method

Syntax Language: C#

public double[] GetParam() gets parameter values from the target
computer as an array of doubles.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-44

xPCParameter.GetParamAsync

Purpose Asynchronous request to get parameter values from target computer

Syntax public void GetParamAsync()
public void GetParamAsync(Object taskId)

Description Class: xPCParameter Class

Method

Syntax Language: C#

public void GetParamAsync() begins an asynchronous request to get
parameter values from the target computer. This method does not block
the calling thread.

public void GetParamAsync(Object taskId) receives a user-defined
object when it completes its asynchronous request. taskId is a
user-defined object that you can have passed to the GetParamAsync
method upon completion.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-45

xPCParameter.GetParamCompleted

Purpose Event when xPCParameter.GetParamAsync is complete

Description Class: xPCParameter Class

Event

Syntax Language: C#

public event GetParamCompletedEventHandler
GetParamCompleted occurs when an asynchronous get
parameter operation is complete.

5-46

xPCSignals.GetSignals

Purpose List of xPCSignal objects specified by array of signal identifiers

Syntax public IList<xPCSignal> GetSignals(string[] arrayofBlockPath)
public IList<xPCSignal> GetSignals(int[] arrayOfSigId)

Description Class: xPCSignals Class

Method

Syntax Language: C#

public IList<xPCSignal> GetSignals(string[]
arrayofBlockPath) returns list of xPCSignal objects specified by array
of signal identifiers. This method creates an ILIST of xPCSignal objects
with an array of blockpaths. arrayofBlockPath is an array of strings
that contains the full block path names to signals.

public IList<xPCSignal> GetSignals(int[] arrayOfSigId)
returns the list of xPCSignal objects specified by an array of signal
identifiers. This method creates an ILIST of xPCSignal objects with an
array of signal identifiers. arrayOfSigId is an array of 32-bit integers
that specifies an array of signal identifiers.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-47

xPCSignals.GetSignalsValue

Purpose Vector of signal values from array

Syntax public double[] GetSignalsValue(int[] arrayOfSigId)
public double[] GetSignalsValue(IList<xPCSignals> arrayOfSigObjs)

Description Class: xPCSignals Class

Method

Syntax Language: C#

public double[] GetSignalsValue(int[] arrayOfSigId) returns a
vector of signal values from an array containing its signal identifiers.
arrayOfSigId is an array of 32-bit signal identifiers. This method
returns the vector as a double.

public double[] GetSignalsValue(IList<xPCSignals>
arrayOfSigObjs) returns a vector of signal values from an IList that
contains xPCSignals objects. This method returns the vector as a
double.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-48

xPCSignal.GetValue

Purpose Value of signal at moment of request

Syntax public virtual double GetValue()

Description Class: xPCSignal Class

Method

Syntax Language: C#

public virtual double GetValue() returns signal value at moment
of request.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-49

xPCTargetPC.Load

Purpose Load target application onto target computer

Syntax public xPCApplication Load()
public xPCApplication Load(string DLMFileName)

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public xPCApplication Load() loads a target application (.dlm file
) onto the target computer. This method returns an xPCApplication
object.

public xPCApplication Load(string DLMFileName) loads
DLMFileName onto the target computer. DLMFileName is a string that
specifies the full path name to the target application to load on the
target computer. This method returns an xPCApplication object.

Exception Exception Condition

ArgumentException DLMFileName is empty, contains only white
spaces, or contains invalid characters.

xPCException When problem occurs, query xPCException
object Reason property.

InvalidOperation-
Exception

DLMFileName is a NULL reference (empty in
Visual Basic) or an empty string.

NotSupported-
Exception

DLMFileName contains a colon (:) in the
middle of the string.

PathTooLong-
Exception

The specified path, file name, or both in
DLMFileName exceed the system-defined
maximum length. For example, on Windows
platforms, path names must be less than 248
characters. File names must be less than 260
characters.

5-50

xPCTargetPC.Load

Exception Condition

SecurityException Caller does not have required permission.

UnauthorizedAccess-
Exception

System does not allow access to DLMFileName.

5-51

xPCTargetPC.LoadAsync

Purpose Asynchronous request to load target application onto target computer

Syntax public void LoadAsync()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void LoadAsync() begins an asynchronous request to load a
target application onto a target computer.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-52

xPCTargetPC.LoadCompleted

Purpose Event when xPCTargetPC.LoadAsync is complete

Syntax public event LoadCompletedEventHandler LoadCompleted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event LoadCompletedEventHandler LoadCompleted occurs
when an asynchronous load operation is complete.

5-53

xPCTargetPC.Loaded

Purpose Event after xPCTargetPC.Load is complete

Syntax public event EventHandler Loaded

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Loaded occurs after target application
onto the target computer is complete.

5-54

xPCTargetPC.Loading

Purpose Event before xPCTargetPC.Load starts

Syntax public event EventHandler Loading

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Loading occurs before the loading of the
target application starts on the target computer.

5-55

xPCParameters.LoadParameterSet

Purpose Load parameter values for target application

Syntax public void LoadParameterSet(string fileName)

Description Class: xPCParameters Class

Method

Syntax Language: C#

public void LoadParameterSet(string fileName) loads parameter
values for the target application in a file. fileName is a string that
represents the file that contains the parameter values to be loaded.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-56

CancelPropertyNotificationEventArgs Class

Purpose CancelPropertyNotification event data

Syntax public class CancelPropertyNotificationEventArgs : PropertyNotificatio
nEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class CancelPropertyNotificationEventArgs :
PropertyNotificatio nEventArgs contains data returned from the
event of cancelling a property value change.

Properties

Properties C# Declaration Syntax Description

Cancel public bool Cancel
{get; set;}

Get or set value indicating
whether or not to cancel
event.

NewValue public Object NewValue
{get;}

Get new value of property.

OldValue public Object OldValue
{get;}

Get old value of property.

PropertyName public virtual string
PropertyName {get;}

Get name of property that
changed.

5-57

ConnectCompletedEventArgs Class

Purpose xPCTargetPC.ConnectCompleted event data

Syntax public class ConnectCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class ConnectCompletedEventArgs :
AsyncCompletedEventArgs contains data returned from the event of
asynchronously connecting to the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-58

DisconnectCompletedEventArgs Class

Purpose xPCTargetPC.DisconnectCompleted event data

Syntax public class DisconnectCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class DisconnectCompletedEventArgs :
AsyncCompletedEventArgs contains data returned from the
event of asynchronously disconnecting from the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-59

GetDataCompletedEventArgs Class

Purpose GetDataCompleted event data

Syntax public class GetDataCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetDataCompletedEventArgs :
AsyncCompletedEventArgs contains data returned from the event of
asynchronously completing a data access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

State public Object State
{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-60

GetFileScSignalDataObjectCompletedEventArgs Class

Purpose xPCDataFileScSignalObject.GetDataCompleted event data

Syntax public class GetFileScSignalDataObjectCompletedEventArgs : GetDataComp
letedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetFileScSignalDataObjectCompletedEventArgs :
GetDataComp letedEventArgs contains data returned from the event
of completing an asynchronous data access to a file scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Data public double[] Data
{get;}

Get the signal data collected
by file scope.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

FileScopeSignalObject public bool
IsScopeSignal {get;}

Get reference to parent
xPCFileScopeSignal object

IsScopeSignal public bool
IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal
(false).

5-61

GetFileScSignalDataObjectCompletedEventArgs Class

Properties C# Declaration Syntax Description

State public Object State
{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-62

GetHostScSignalDataObjectCompletedEventArgs Class

Purpose xPCDataHostScSignalObject.DataObjectCompleted event data

Syntax public class GetHostScSignalDataObjectCompletedEventArgs : GetDataComp
letedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetHostScSignalDataObjectCompletedEventArgs :
GetDataComp letedEventArgs contains data returned by the event of
completing an asynchronous data access to a host scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Data public double[] Data
{get;}

Get the signal data collected
by host scope

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

IsScopeSignal public bool
IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal
(false).

ScopeSignalObject public xPCScopeSignal
ScopeSignalObject
{get;}

Get reference to parent
xPCHostScopeSignal object

5-63

GetHostScSignalDataObjectCompletedEventArgs Class

Properties C# Declaration Syntax Description

State public Object State
{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-64

GetLogDataCompletedEventArgs Class

Purpose xPCDataLoggingObject.GetDataCompleted event data

Syntax public class GetLogDataCompletedEventArgs : GetDataCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetLogDataCompletedEventArgs :
GetDataCompletedEventArgs contains data returned by the
event of completing an asynchronous data access to a data logging
object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Index public int Index {get;} Get log index.

LoggedData public double[]
LoggedData {get;}

Get logged data.

LogType public xPClogType
LogType {get;}

Get log type as xPClogType.

5-65

GetLogDataCompletedEventArgs Class

Properties C# Declaration Syntax Description

State public Object State
{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-66

GetParamCompletedEventArgs Class

Purpose xPCParameter.GetParamCompleted event data

Syntax public class GetParamCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetParamCompletedEventArgs :
AsyncCompletedEventArgs contains data returned by the event of
completing an asynchronous parameter access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Result public double[] Result
{get;}

Get data values of the
xPCParameter object

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-67

LoadCompletedEventArgs Class

Purpose xPCTargetPC.LoadCompleted event data

Syntax public class LoadCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class LoadCompletedEventArgs :
AsyncCompletedEventArgs contains data returned by the event of
asynchronously loading a target application onto the target computer.

Properties

Properties C# Declaration Syntax Description

Application public xPCApplication
Application {get;}

Get reference to
xPCApplication object.

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-68

PropertyNotificationEventArgs Class

Purpose PropertyNotification event data

Syntax public class PropertyNotificationEventArgs : PropertyChangedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class PropertyNotificationEventArgs :
PropertyChangedEventArgs contains data returned by the
event of changing property values.

Properties

Properties C# Declaration Syntax Description

NewValue public Object NewValue
{get;}

Get new value of property.

OldValue public Object OldValue
{get;}

Get old value of property.

PropertyName public virtual string
PropertyName {get;}

Get name of property that
changed.

5-69

RebootCompletedEventArgs Class

Purpose xPCTargetPC.RebootCompleted event data

Syntax public class RebootCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class RebootCompletedEventArgs :
AsyncCompletedEventArgs contains data returned by the event of
asynchronously restarting the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-70

SetParamCompletedEventArgs Class

Purpose xPCParameter.SetParamCompleted event data

Syntax public class SetParamCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class SetParamCompletedEventArgs :
AsyncCompletedEventArgs contains data returned by the event of
asynchronously setting a parameter value.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

NewValue public Object NewValue
{get;}

Get new value of property.

OldValue public Object OldValue
{get;}

Get old value of property.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-71

UnloadCompletedEventArgs Class

Purpose xPCTargetPC.UnloadCompleted event data

Syntax public class UnloadCompletedEventArgs : AsyncCompletedEventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class UnloadCompletedEventArgs :
AsyncCompletedEventArgs contains data returned by the event of
asynchronously unloading the target application from the target
computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled
{get;}

Get value that indicates if
an asynchronous operation
has been cancelled.

Error public Exception Error
{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState
{get;}

Get unique identifier for
asynchronous task.

5-72

xPCApplication Class

Purpose Access to target application loaded on target computer

Syntax public sealed class xPCApplication : xPCBaseNotification

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public sealed class xPCApplication : xPCBaseNotification
initializes a new instance of the xPCApplication class.

Methods

Method Description

xPCApplication.Start Start target application execution

xPCApplication.Stop Stop target application execution

Events

Events Description

xPCApplication.Started Event after xPCApplication.Start is complete

xPCApplication.StartingEvent before xPCApplication.Start executes

xPCApplication.Stopped Event after xPCApplication.Stop is complete

xPCApplication.StoppingEvent before xPCApplication.Stop executes

5-73

xPCApplication Class

Properties

Properties C# Declaration
Syntax

Description Exception

CPUOverload public bool
CPUOverload
{get;}

Get state of
CPUOverload.

xPCException —
When problem
occurs, query
xPCException object
Reason property.

ExecTime public double
ExecTime {get;}

Get execution time. xPCException —
When problem
occurs, query
xPCException object
Reason property.

Logger public
xPCAppLogger
Logger {get;}

Get reference to the
application logging
object.

MaximumTeT public double
MaximumTeT {get;}

Get the maximum
time. The first
element contains
the maximum TET
number; the second
element contains
how long it took to
achieve the TET
time.

xPCException —
When problem
occurs, query
xPCException object
Reason property.

5-74

xPCApplication Class

Properties C# Declaration
Syntax

Description Exception

MinimumTeT public double
MinimumTeT {get;}

Get the minimum
time. The first
element contains
the minimum TET
number; the second
element contains
how long it took to
achieve the TET
time.

xPCException —
When problem
occurs, query
xPCException object
Reason property.

Name public string
Name {get;}

Get the current
name of the loaded
target application

xPCException —
When problem
occurs, query
xPCException object
Reason property.

Parameters public
xPCParameters
Parameters {get;}

Get reference to
the xPCParameters
object.

SampleTime public double
SampleTime {get;
set;}

Get or set Sample
time

xPCException —
When problem
occurs, query
xPCException object
Reason property.

Scopes public xPCScopes
Scopes {get;}

Get collection of
scopes assigned to
the application

Signals public xPCSignals
Signals {get;}

Get reference to
xPCSignals object

5-75

xPCApplication Class

Properties C# Declaration
Syntax

Description Exception

Status public
xPCAppStatus
Status {get;}

Get simulation
status. See
xPCAppStatus
Enumerated Data
Type.

xPCException —
When problem
occurs, query
xPCException object
Reason property.

StopTime public double
StopTime {get;
set;}

Get and set stop time xPCException —
When problem
occurs, query
xPCException object
Reason property.

Target public
xPCTargetPC
Target {get;}

Get reference to
parent xPCTargetPC
object.

5-76

xPCAppLogger Class

Purpose Access to target application loggers

Syntax public class xPCAppLogger : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCAppLogger : xPCApplicationObject initializes a
new instance of the xPCAppLogger class.

Properties

Properties C# Declaration Syntax Description

LogMode public xPCLogMode
LogMode {get; set;}

Control which data points
to log. See xPCLogMode
Enumerated Data Type.

LogModeValue public int LogModeValue
{get; set;}

Get or set the
value-equidistant logging.
Set the value to the
difference in signal values.

MaxLogSamples public int
MaxLogSamples {get;}

Get maximum number of
samples that can be in log
buffer.

OutputLog public xPCOutputLogger
OutputLog {get;}

Return a reference to the
xPCOutputLogger object.

StateLog public xPCStateLogger
StateLog {get;}

Return a reference to the
xPCStateLogger object.

TETLog public xPCTETLogger
TETLog {get;}

Return a reference to the
xPCTETLogger object.

TimeLog public xPCTimeLogger
TimeLog {get;}

Return a reference to the
xPCTimeLogger object.

5-77

xPCDataFileScSignalObject Class

Purpose Object that holds logged file scope signal data

Syntax public class xPCDataFileScSignalObject : xPCFileScopeStream,
IxPCDataService

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataFileScSignalObject :
xPCFileScopeStream, IxPCDataService accesses an object that holds
logged file scope signal data.

Methods

Method Description

xPCDataFileScSignalObject.GetDataCopy file scope signal data from target computer

xPCDataFileScSignalObject.GetDataAsyncAsynchronously copy file scope signal data from target
computer

Events

Event Description

xPCDataFileScSignalObject.GetDataCompletedEvent when xPCDataFileScSignalObject.GetDataAsync is
complete

Properties

Property C# Declaration Syntax Description

ScopeSignal-
Object

public xPCFileScopeSignal
ScopeSignalObject {get;}

Get parent scope signal
xPCFileScopeSignal object.

5-78

xPCDataHostScSignalObject Class

Purpose Object that holds logged host scope signal data

Syntax public class xPCDataHostScSignalObject : xPCApplicationNotficationObje
ct, IxPCDataService, IxPCDataServiceAsync

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataHostScSignalObject :
xPCApplicationNotficationObje ct, IxPCDataService,
IxPCDataServiceAsync accesses an object that holds logged host scope
signal data.

Methods

Method Description

xPCDataHostScSignalObject.GetDataCopy host scope signal data from target computer

xPCDataHostScSignalObject.GetDataAsyncAsynchronously copy host scope signal data from target
computer

Events

Event Description

xPCDataHostScSignalObject.GetDataCompletedEvent when xPCDataHostScSignalObject.GetDataAsync is
complete

5-79

xPCDataHostScSignalObject Class

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;
set;}

A number n, where every nth sample
is acquired in a scope window.

NumSamples public int NumSamples {get;
set;}

Get or set number of contiguous
samples captured during the
acquisition of a data package. If the
scope stops before capturing this
number of samples, the scope has
the collected data up to the end of
data collection. It then has zeroes
for the remaining uncollected data.
Note what type of data you are
collecting, it is possible that your
data contains zeroes.

For file scopes, this parameter
works with the autorestart setting.
If autorestart is enabled, the
file scope collects data up to
NumSamples, then starts over
again, overwriting the buffer. If
autorestart is disabled, the file
scope collects data only up to
NumSamples, then stops.

ScopeSignal-
Object

public xPCHostScopeSignal
ScopeSignalObject {get;}

Get parent scope signal
xPCHostScopeSignal object.

Startindex public int StartIndex {get;
set;}

Get and set the index of the first
sample to retrieve from the log.

5-80

xPCDataLoggingObject Class

Purpose Object that holds logged data

Syntax public class xPCDataLoggingObject : xPCApplicationNotficationObject,
IxPCDataService, xPCDataServiceAsync

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataLoggingObject :
xPCApplicationNotficationObject, IxPCDataService,
xPCDataServiceAsync accesses an object that holds logged data.

Methods

Method Description

xPCDataLoggingObject.GetDataCopy signal data from target computer

xPCDataLoggingObject.GetDataAsyncAsynchronously copy signal data from target computer

Events

Event Description

xPCDataLoggingObject.GetDataCompletedEvent when xPCDataLoggingObject.GetDataAsync is
complete

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;
set;}

A number n, where every nth sample
is acquired in a scope window.

LogId public int LogId {get;}

5-81

xPCDataLoggingObject Class

Property C# Declaration Syntax Description

NumSamples public int NumSamples {get;
set;}

Get or set number of contiguous
samples captured during the
acquisition of a data package. If the
scope stops before capturing this
number of samples, the scope has
the collected data up to the end of
data collection. It then has zeroes
for the remaining uncollected data.
Note what type of data you are
collecting, it is possible that your
data contains zeroes.

For file scopes, this parameter
works with the autorestart setting.
If autorestart is enabled, the
file scope collects data up to
NumSamples, then starts over
again, overwriting the buffer. If
autorestart is disabled, the file
scope collects data only up to
NumSamples, then stops.

Startindex public int StartIndex {get;
set;}

Get and set the index of the first
sample to retrieve from the log.

5-82

xPCDirectoryInfo Class

Purpose Access folders and subfolders of target computer file system

Syntax public class xPCDirectoryInfo : xPCFileSystemInfo

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDirectoryInfo : xPCFileSystemInfo accesses
folders and subfolders of target computer file system.

Constructor

Constructor Description

xPCDirectoryInfo Construct new instance of the xPCDirectoryInfo class on
specified path

Methods

Method Description

xPCDirectoryInfo.CreateCreate folder

xPCDirectoryInfo.DeleteDelete empty xPCDirectoryInfo object

xPCDirectoryInfo.GetDirectoriesSubfolders of current folder

xPCDirectoryInfo.GetFilesFile list from current folder

xPCDirectoryInfo.GetFileSystemInfosFile system information for files and subfolders in folder

5-83

xPCDirectoryInfo Class

Properties

Property C# Declaration
Syntax

Description Exception

CreationTime public override
DateTime
CreationTime {get;}

Get creation time of the
current FileSystemInfo
object.

xPCException—When
problem occurs, query
xPCException object
Reason property.

Exists public override
bool Exists {get;}

Get a Boolean value
to indicate existence
of folder. A value of
1 indicates existent, 0
indicates nonexistent.

xPCException—When
problem occurs, query
xPCException object
Reason property.

Extension public string
Extension {get;}

Get string that
represents the
extension part of the
file.

FullName public virtual
string FullName
{get;}

Get full path name of
the folder or file.

Name public override
string Name {get;}

Get the name of this
xPCDirectoryInfo
instance as a string.

xPCException—When
problem occurs, query
xPCException object
Reason property.

Parent public
xPCDirectoryInfo
Parent {get;}

Get the parent folder of
a specified subfolder.

xPCException—When
problem occurs, query
xPCException object
Reason property.Root public

xPCDirectoryInfo
Root {get;}

Get the root portion of
a path.

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-84

xPCDriveInfo Class

Purpose Information for target computer drive

Syntax public class xPCDriveInfo

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target
computer drive.

Constructor

Constructor Description

xPCDriveInfo Initialize new instance of xPCDriveInfo class

Methods

Method Description

xPCDriveInfo.Refresh Synchronize with file drives on target computer

Properties

Property C# Declaration
Syntax

Description Exception

Available-
Freespace

public long
AvailableFreeSpace
{get;}

Indicate amount of
available free space on
drive.

xPCException—When
problem occurs, query
xPCException object
Reason property.

DriveFormat public string
DriveFormat {get;}

Get name of file system
type, such as FAT16 or
FAT32.

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-85

xPCDriveInfo Class

Property C# Declaration
Syntax

Description Exception

Name public string Name
{get;}

Get name of drive. xPCException—When
problem occurs, query
xPCException object
Reason property.

Root-
Directory

public
xPCDirectoryInfo
RootDirectory
{get;}

Get root folder of drive. xPCException—When
problem occurs, query
xPCException object
Reason property.TotalSize public long

TotalSize {get;}
Get total size of drive
in bytes.

xPCException—When
problem occurs, query
xPCException object
Reason property.

VolumeLabel public string
VolumeLabel {get;}

Get volume label of
drive.

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-86

xPCException Class

Purpose Information for xPCException

Syntax public class xPCException : Exception, ISerializable

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCException : Exception, ISerializable
accesses information on Simulink Real-Time exceptions.

Constructor

Constructor Description

xPCException Construct new instance of xPCException class

Properties

Property C# Declaration Syntax Description

Data public virtual IDictionary
Data {get;}

Get collection of key/value
pairs that provide additional
user-defined information about
the exception.

HelpLink public virtual string
HelpLink {get; set;}

Get or set link to the help file
associated with this exception.

InnerException public Exception
InnerException {get;}

Get Exception instance that
caused the current exception.

Message public override string
Message {get;}

Get exceptionmessage. Overrides
Exception.Message property.

Reason public xPCExceptionReason
Reason {get;}

Get xPCExceptionReason reason.
See xPCExceptionReason
Enumerated Data Type.

5-87

xPCException Class

Property C# Declaration Syntax Description

Source public virtual string
Source {get; set;}

Get or set name of target
application or object that causes
the error.

StackTrace public virtual string
StackTrace {get;}

Get string representation of
the frames on the call stack at
the time the method emits the
current exception.

TargetPCObject public xPCTargetPC
TargetPCObject {get;}

Get xPCTargetPC object that
raised the error.

TargetSite public MethodBase
TargetSite {get;}

Get method that emits the
current exception.

5-88

xPCFileInfo Class

Purpose Access to file and xPCFileStream objects

Syntax public class xPCDriveInfo

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target
computer drive.

Constructor

Constructor Description

xPCFileInfo Construct new instance of xPCFileInfo class

Methods

Method Description

xPCFileInfo.CopyToHost Copy file from target computer file system to host file system

xPCFileInfo.Create Create file in specified path name

xPCFileInfo.Delete Permanently delete file on target computer

xPCFileInfo.Open Open file

xPCFileInfo.OpenRead Create read-only xPCFileStream object

xPCFileInfo.Rename Rename file

xPCFileInfo Construct new instance of xPCFileInfo class

Properties

Property C# Declaration Syntax Description

Directory public xPCDirectoryInfo
Directory {get;}

Get an xPCDirectoryInfo object.

5-89

xPCFileInfo Class

Property C# Declaration Syntax Description

DirectoryName public string DirectoryName
{get;}

Get a string that represents the
full folder path name.

Exists public override bool Exists
{get;}

Get value that indicates whether
a file exists.

Length public long Length {get;} Get the size, in bytes, of the
current file.

Name public override string Name
{get;}

Get the name of the file.

5-90

xPCFileScope Class

Purpose Access to file scopes

Syntax public class xPCFileScope : xPCScope

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScope : xPCScope initializes a new instance
of the xPCFileScope class.

Methods

The xPCFileScope class inherits methods from xPCScope Class.

Events

The xPCFileScope class inherits events from xPCScope Class.

5-91

xPCFileScope Class

Properties

The xPCFileScope class inherits its other properties from xPCScope
Class.

Property C# Declaration Syntax Description Exception

AutoRestart public bool
AutoRestart {get;
set;}

Get or set the file scope
autorestart setting.
AutoRestart is a
Boolean. Values are
'on' and 'off'.

xPCException —
When problem occurs,
query xPCException
object Reason property.

DataTime-
Object

public
xPCDataHostScSignalObject
DataTimeObject {get;}

Get data time object. xPCException —
When problem occurs,
query xPCException
object Reason property.

DynamicMode public bool
DynamicMode {get;
set;}

Get or set ability to
dynamically create
multiple log files for
file scopes. Values are
'on' and 'off' . By
default, the value is
'off'.

xPCException —
When problem occurs,
query xPCException
object Reason property.

FileMode public SCFILEMODE
FileMode {get; set;}

Get or set write mode of
file. See xPCFileMode
Enumerated Data
Type.

xPCException —
When problem occurs,
query xPCException
object Reason property.

FileName public string
FileName {get; set;}

Get or set file name for
scope.

5-92

xPCFileScope Class

Property C# Declaration Syntax Description Exception

MaxWrite-
FileSize

public uint
MaxWriteFileSize
{get; set;}

Get or set the
maximum file size
in bytes allowed before
incrementing to the
next file.

When the size of
a log file reaches
MaxWriteFileSize,
the software creates
a subsequently
numbered file name,
and continues logging
data to that file, up
until the highest log
file number you have
specified.

If the software cannot
create additional log
files, it overwrites the
first log file.

This value must be a
multiple of WriteSize.
Default is 536870912.

xPCException —
When problem occurs,
query xPCException
object Reason property.

Signals public xPCTarget-
ScopeSignalCollection
Signals {get;}

Get collection of
file scope signals
(xPCFileScope-
SignalCollection)
assigned to this scope
object.

5-93

xPCFileScope Class

Property C# Declaration Syntax Description Exception

Trigger-
Signal

public
xPCTgtScopeSignal
TriggerSignal {get;
set;}

Get or set file
scope signal
(xPCFileScopeSignal)
used to trigger the
scope.

xPCException —
When problem occurs,
query xPCException
object Reason property.

WriteSize public int WriteSize
{get; set;}

Get or set the unit
number of bytes for
memory buffer writes.
The memory buffer
accumulates data in
multiples of write size.
WriteSize must be
multiple of 512.

xPCException —
When problem occurs,
query xPCException
object Reason property.

5-94

xPCFileScopeCollection Class

Purpose Collection of xPCFileScope objects

Syntax public class xPCFileScopeCollection : xPCScopeCollection<xPCFileScope
>

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeCollection :
xPCScopeCollection<xPCFileScope > initializes collection of
xPCFileScope objects.

Methods

Method Description

xPCFileScopeCollection.AddCreate xPCFileScope object with the next available scope ID
as key

xPCFileScopeCollection.RefreshSynchronize with file scopes on target computer

xPCFileScopeCollection.StartAllStart all file scopes in one call

xPCFileScopeCollection.StopAllStop all file scopes in one call

5-95

xPCFileScopeSignal Class

Purpose Access to file scope signals

Syntax public class xPCFileScopeSignal : xPCScopeSignal

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignal : xPCScopeSignal initializes
access to file scope signals.

Properties

Property C# Declaration Syntax Description

FileScopeSignal-
DataObject

public
xPCDataFileScSignalObject
FileScopeSignalDataObject
{get;}

Get the data
xPCDataFileScSignalObject
object associated with this
xPCFileScopeSignal object.

Scope public xPCFileScope Scope
{get;}

Get parent file scope
xPCFileScope object.

5-96

xPCFileScopeSignalCollection Class

Purpose Collection of xPCFileScopeSignal objects

Syntax public class xPCFileScopeSignalCollection : xPCScopeSignalCollection<x
PCFileScopeSignal>

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignalCollection :
xPCScopeSignalCollection<x PCFileScopeSignal> initializes
collection of xPCFileScopeSignal objects.

Methods

Method Description

xPCFileScopeSignalCollection.AddAdd signals to file scope

xPCFileScopeSignalCollection.RefreshSynchronize with signals for associated scope on target
computer

Properties

Property C# Declaration
Syntax

Description Exception

Item public
xPCFileScopeSignal
Item[string
blkpath] {get;}

Get
xPCFileScopeSignal
object from signal name
(blkpath).

blkpath is the
signal name that
represents a signal
object added to its
parent xPCHostScope
object. This property
returns the file scope

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-97

xPCFileScopeSignalCollection Class

Property C# Declaration
Syntax

Description Exception

signal object as type
xPCFileScopeSignal.

5-98

xPCFileStream Class

Purpose Access xPCFileStream objects

Syntax public class xPCFileStream : IDisposable

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileStream : IDisposable initializes
xPCFileStream objects. These objects expose the file stream around a
file.

Constructor

Constructor Description

xPCFileStream Construct new instance of xPCFileStream class

Methods

Method Constructor

xPCFileStream.Close Close current stream

xPCFileStream.Read Read block of bytes from stream and write data to buffer

xPCFileStream.Write Write block of bytes to file stream

xPCFileStream.WriteByteWrite byte to current position in file stream

Property

Property C# Declaration Syntax Description Exception

Length public long Length
{get;}

Get length of file stream. xPCException — When
problem occurs, query
xPCException object
Reason property.

5-99

xPCFileSystem Class

Purpose File system drives and folders

Syntax public class xPCFileSystem

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileSystem initializes file system drive and folder
objects.

Methods

Method Description

xPCFileSystem.Create Create folder

xPCFileSystem.GetCurrentDirectoryCurrent working folder for target application

xPCFileSystem.GetDrivesDrive names for the logical drives on the target computer

xPCFileSystem.RemoveFileRemove file name from target computer

xPCFileSystem.SetCurrentDirectoryCurrent folder

5-100

xPCFileSystemInfo Class

Purpose File system information

Syntax public abstract class xPCFileSystemInfo

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCFileSystemInfo initializes file system
information objects.

Constructor

Constructor Description

xPCFileSystemInfo Initialize new instance of xPCFileSystemInfo class

Methods

Method Description

xPCFileSystemInfo.DeleteDelete current folder

Properties

Property C# Declaration Syntax Description

CreationTime public DateTime CreationTime
{get;}

Get creation time of current
FileSystemInfo object.

Exists public abstract bool Exists
{get;}

Get value that indicates existence
of file or folder.

Extension public string Extension {get;} Get string that represents file
extension.

5-101

xPCFileSystemInfo Class

Property C# Declaration Syntax Description

FullName public virtual string FullName
{get;}

Get full path name of file or folder.

Name public abstract string Name
{get;}

Get name of folder.

5-102

xPCHostScope Class

Purpose Access to host scopes

Syntax public class xPCHostScope : xPCScope

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScope : xPCScope initializes a new instance
of the xPCHostScope class.

Methods

The xPCHostScope class inherits methods from xPCScope Class.

Events

The xPCHostScope class inherits events from xPCScope Class.

Properties

The xPCHostScope class inherits its other properties from xPCScope
Class.

Property C# Declaration
Syntax

Description Exception

DataTime-
Object

public
xPCDataHostSc-
SignalObject
DataTimeObject
{get;}

Get host scope time data
object xPCDataHost-
ScSignalObject
associated with this
scope.

Signals public xPCTarget-
ScopeSignal-

Get collection of host
scope signals (xPCHost-

5-103

xPCHostScope Class

Property C# Declaration
Syntax

Description Exception

Collection Signals
{get;}

ScopeSignalCollection)
assigned to this scope
object.

Trigger-
Signal

public xPCTgtScope-
Signal TriggerSignal
{get; set;}

Get or set host scope
signal (xPCHostScope-
Signal) used to trigger
the scope.

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-104

xPCHostScopeCollection Class

Purpose Collection of xPCHostScope objects

Syntax public class xPCHostScopeCollection : xPCScopeCollection<xPCHostScope
>

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeCollection :
xPCScopeCollection<xPCHostScope > initializes collection of
xPCHostScope objects.

Methods

Method Description

xPCHostScopeCollection.AddCreate xPCHostScope object with the next available scope ID
as key

xPCHostScopeCollection.RefreshRefresh host scope object state

xPCHostScopeCollection.StartAllStart all host scopes in one call

xPCHostScopeCollection.StopAllStop all host scopes in one call

5-105

xPCHostScopeSignal Class

Purpose Access to host scope signals

Syntax public class xPCHostScopeSignal : xPCScopeSignal

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal initializes
access to host scope signals.

Properties

Property C# Declaration Syntax Description

HostScopeSignal-
DataObject

public
xPCDataHostScSignalObject
HostScopeSignalDataObject
{get;}

Get host scope signal data object.

Scope public xPCHostScope Scope
{get;}

Get host scope.

5-106

xPCHostScopeSignalCollection Class

Purpose Collection of xPCHostScopeSignal objects

Syntax public class xPCHostScopeSignal : xPCScopeSignal

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal represents a
collection of xPCHostScopeSignal objects.

Methods

Method Description

xPCHostScopeSignalCollection.AddCreate xPCHostScopeSignal object

xPCHostScopeSignalCollection.RefreshSynchronize signals for associated host scopes on target
computer

Properties

Property C# Declaration
Syntax

Description Exception

Item public
xPCHostScopeSignal
Item[string
blkpath] {get;}

Get
xPCHostScopeSignal
object from signal name
(blkpath).

blkpath is the signal
name that represents
a signal object
added to its parent
xPCHostScope object.

This property returns
the file scope signal

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-107

xPCHostScopeSignalCollection Class

Property C# Declaration
Syntax

Description Exception

object as type
xPCHostScopeSignal.

5-108

xPCLog Class

Purpose Base data logging class

Syntax public abstract class xPCLog : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCLog : xPCApplicationObject
represents the base data logging class.

Properties

Properties C# Declaration Syntax Description

IsEnabled public abstract bool
IsEnabled {get;}

Get whether to enable or
disable logging.

NumLogSamples public int NumLogSamples
{get;}

Get number of samples in log
buffer.

NumLogWraps public int NumLogWraps
{get;}

Get number of times log
buffer wraps.

5-109

xPCOutputLogger Class

Purpose Access to output logger

Syntax public class xPCOutputLogger : xPCLog

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCOutputLogger : xPCLog initializes a new
instance of the xPCOutputLogger class.

Properties The xPCOutputLogger class inherits its other properties from xPCLog
Class.

Properties C# Declaration Syntax Description

DataLoggingObjects public
IList<xPCDataLoggingObject>
DataLoggingObjects
{get;}

Get ILIST of application data
logging objects.

IsEnabled public override bool
IsEnabled {get;}

Get whether to enable or
disable logging. Overrides
xPCLog.IsEnabled.

Item public
xPCDataLoggingObject
Item[int index] {get;}

Get xPCDataLogging object
specified by index (index).
index is the index to the
specified logging output. This
property returns an object of
type xPCDataLoggingObject.

NumOutputs public int NumOutputs
{get;}

Return a reference to the
xPCOutputLogger object.

5-110

xPCParameter Class

Purpose Single run-time tunable parameter

Syntax public class xPCParameter : xPCApplicationNotficationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameter :
xPCApplicationNotficationObject initializes a new instance of the
xPCParameter class. An xPCParameter object represents a single
specific target application parameter. You can tune the parameter
using xPCParameter objects.

Methods

Method Description

xPCParameter.GetParam Get parameter values from target computer

xPCParameter.GetParamAsyncAsynchronous request to get parameter values from target
computer

xPCParameter.SetParam Change value of parameter on target computer

xPCParameter.SetParamAsyncAsynchronous request to change parameter value on target
computer

Events

Event Description

xPCParameter.GetParamCompletedEvent when xPCParameter.GetParamAsync is complete

xPCParameter.SetParamCompletedEvent when xPCParameter.SetParamAsync is complete

5-111

xPCParameter Class

Properties

Property C# Declaration
Syntax

Description Exception

BlockPath public string
BlockPath {get;}

Get the full block path
name of the parameter
for an instance of an
xPCParameter object.

DataType public string
DataType {get;}

Get the Simulink
type, as a string, of
the parameter for
an instance of an
xPCParameter object.

Dimensions public int[]
Dimensions {get;}

Get an array that
contains elements of
dimension lengths.

Name public string Name
{get;}

Get the name of
the parameter to
an instance of an
xPCParameter

Parameter-
Id

public int
ParameterId {get;}

Get the numerical
index (identifier) that
maps to an instance
of an xPCParameter
object.

Rank public int Rank
{get;}

Get the number of
dimensions of the
parameter

Value public Array Value
{get; set;}

Get and set the
parameter value.

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-112

xPCParameters Class

Purpose Access run-time parameters

Syntax public class xPCParameters : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameters : xPCApplicationObject initializes
a new instance of the xPCParameters class. An xPCParameters object
is a container to access run time parameters.

Methods

Method Description

xPCParameters.LoadParameterSetLoad parameter values for target application

xPCParameters.Refresh Refresh state of object

xPCParameters.SaveParameterSetSave parameter values of target application

Properties

Property C# Declaration Syntax Description

NumParameters public int NumParameters
{get;}

Get the total number of tunable
parameters in the target
application.

Item public xPCParameter Item[int
paramIdx] {get;} or

public xPCParameter
Item[string blkName, string
paramName] {get;}

Return reference to xPCParameter
object specified by its parameter
identifier (paramIdx) or parameter
name (paramname).

paramIdx is a 32-bit integer
parameter identifier that
represents the actual signal.

5-113

xPCParameters Class

Property C# Declaration Syntax Description

blkName is a string that specifies
the block path name for the actual
block that contains the parameter.
paramName is a string that specifies
the parameter name.

This method returns the
xPCParameter object that
represents the actual parameter.

5-114

xPCScope Class

Purpose Access Simulink Real-Time scopes

Syntax public abstract class xPCScope : xPCApplicationNotficationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCScope :
xPCApplicationNotficationObject initializes a new instance
of the xPCScope class.

Methods

Method Description

xPCScope.Start Start scope

xPCScope.Stop Stop scope

xPCScope.Trigger Software-trigger start of data acquisition for scopes

Events

Event Description

xPCScope.ScopeStarted Event after xPCScope.Start is complete

xPCScope.ScopeStarting Event before xPCScope.Start executes

xPCScope.ScopeStopped Event after xPCScope.Stop is complete

xPCScope.ScopeStopping Event before xPCScope.Stop executes

5-115

xPCScope Class

Properties

Property C# Declaration
Syntax

Description Exception

Decimation public int
Decimation {get;
set;}

Get or set a number
n, where every nth
sample is acquired in a
scope window.

xPCException —
When problem occurs,
query xPCException
object Reason property.

NumPrePost-
Samples

public int
NumPrePostSamples
{get; set;}

Get or set number
of samples collected
before or after a trigger
event. The default
value is 0. Entering a
negative value collects
samples before the
trigger event. Entering
a positive value collects
samples after the
trigger event. If you
set TriggerMode to
'FreeRun', changing
this property does
not change data
acquisition.

xPCException —
When problem occurs,
query xPCException
object Reason property.

5-116

xPCScope Class

Property C# Declaration
Syntax

Description Exception

NumSamples public int
NumSamples {get;
set;}

Get or set number of
contiguous samples
captured during
the acquisition of a
data package. If the
scope stops before
capturing this number
of samples, the scope
has the collected data
up to the end of data
collection. It then
has zeroes for the
remaining uncollected
data. Note what type of
data you are collecting,
it is possible that your
data contains zeroes.

For file scopes, this
parameter works
with the autorestart
setting. If autorestart
is enabled, the file
scope collects data
up to NumSamples,
then starts over
again, overwriting the
buffer. If autorestart is
disabled, the file scope
collects data only up
to NumSamples, then
stops.

xPCException —
When problem occurs,
query xPCException
object Reason property.

ScopeId public int ScopeId
{get;}

A numeric index,
unique for each scope.

5-117

xPCScope Class

Property C# Declaration
Syntax

Description Exception

Status public SCSTATUS
Status {get;}

Indicate whether data
is being acquired,
the scope is waiting
for a trigger, the
scope has been
stopped (interrupted),
or acquisition is
finished. Values
are 'Acquiring',
'Ready for being
Triggered',
'Interrupted', and
'Finished'.

xPCException —
When problem occurs,
query xPCException
object Reason property.

TriggerAnySignalpublic int
TriggerAnySignal
{get; set;}

Get or set xPCSignal
Class object for trigger
signal. If TriggerMode
is 'Signal', this signal
triggers the scope even
if it was not added to
the scope.

xPCException —
When problem occurs,
query xPCException
object Reason property.

TriggerLevel public double
TriggerLevel {get;
set;}

Get or set trigger level.
If TriggerMode is
'Signal', indicates
the value the signal
has to cross to trigger
the scope and start
acquiring data. You
can cross the trigger
level with either a
rising or falling signal.

xPCException —
When problem occurs,
query xPCException
object Reason property.

5-118

xPCScope Class

Property C# Declaration
Syntax

Description Exception

TriggerMode public
SCTRIGGERMODE
TriggerMode {get;
set;}

Get or set trigger mode
for a scope. Valid
values are 'FreeRun'
(default), 'Software',
'Signal', and
'Scope'.

xPCException —
When problem occurs,
query xPCException
object Reason property.

TriggerScope public int
TriggerScope {get;
set;}

If TriggerMode is
'Scope', identifies
the scope to use for
a trigger. You can
set a scope to trigger
when another scope
is triggered. You
do this operation
by setting the slave
scope property
TriggerScope to the
scope index of the
master scope.

xPCException —
When problem occurs,
query xPCException
object Reason property.

TriggerScope-
Sample

public int
TriggerScopeSample
{get; set;}

If TriggerMode is
'Scope', specifies the
number of samples
the triggering scope
is to acquire before
triggering a second
scope. This value must
be nonnegative.

xPCException —
When problem occurs,
query xPCException
object Reason property.

5-119

xPCScope Class

Property C# Declaration
Syntax

Description Exception

TriggerSlope public TRIGGERSLOPE
{get; set;}

If TriggerMode is
'Signal', indicates
whether the trigger is
on a rising or falling
signal. Values are of
type SLTRIGGERSLOPE:
SLTRIGGERSLOPE.EITHER
(default),
SLTRIGGERSLOPE.RISING,
and
SLTRIGGERSLOPE.FALLING.
This property
returns the value
SCTRIGGERSLOPE.

xPCException —
When problem occurs,
query xPCException
object Reason property.

Type public string Type
{get;}

Get scope type as a
string.

5-120

xPCScopeCollectionEventArgs Class

Purpose xPCScopeCollection.Added event data

Syntax public class xPCScopeCollectionEventArgs : EventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeCollectionEventArgs : EventArgs
contains data returned by the event of adding a scope to a scope
collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope
{get;}

Get xPCScope object you
added.

5-121

xPCScopeRemCollectionEventArgs Class

Purpose xPCScopeCollection.Removed event data

Syntax public class xPCScopeRemCollectionEventArgs : EventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeRemCollectionEventArgs : EventArgs
contains data returned by the event of removing a scope from a scope
collection.

Properties

Properties C# Declaration Syntax Description

ScopeNumber public int ScopeNumber
{get;}

Get scope number of the
scope that you have removed.

5-122

xPCScopeSignalCollectionEventArgs Class

Purpose xPCScopeSignalCollection.Added event data

Syntax public class xPCScopeSignalCollectionEventArgs : EventArgs

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeSignalCollectionEventArgs : EventArgs
contains data returned by the event of adding a signal to a scope signal
collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope
{get;}

Get parent xPCScope object

Signal public xPCSignal Signal
{get;}

Get xPCSignal object that
you added to collection.

5-123

xPCScopes Class

Purpose Access scope objects

Syntax public class xPCScopes : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopes : xPCApplicationObject initializes a
new instance of the xPCScopes class.

Methods

Method Description

xPCScopes.RefreshAll Synchronize with all scopes on target computer

Properties

Property C# Declaration Syntax Description

FileScopes public
xPCFileScopeCollection
FileScopes {get;}

Get collection of file scopes
(xPCFileScopeCollection).

HostScopes public
xPCHostScopeCollection
HostScopes {get;}

Get collection of host scopes
(xPCHostScopeCollection).

ScopeObjectDict public IDictionary<int,
xPCScope> ScopeObjectDict
{get;}

Get entire scopes object as a
Dictionary object.

ScopeObjectList public IList<xPCScope>
ScopeObjectList {get;}

Get entire scopes object as a list.

TargetScopes public
xPCTargetScopeCollection
TargetScopes {get;}

Get collection of target scopes
(xPCTargetScopeCollection).

5-124

xPCSignal Class

Purpose Access signal objects

Syntax public class xPCSignal : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignal : xPCApplicationObject initializes a
new instance of the xPCSignal class.

Methods

Method Description

xPCSignal.GetValue Value of signal at moment of request

xPCSignal.TryGetValue Status of get signal value at moment of request

Properties

Property C# Declaration Syntax Description

BlockPath public virtual string
BlockPath {get;}

Get block path name (signal name)
of the signal.

DataType public virtual string DataType
{get;}

Get Simulink data type name.

Label public virtual string Label
{get;}

Get label of signal. If no label is
associated with the signal, this
property returns an empty string.

SignalId public virtual int SignalId
{get;}

Get numeric identifier that
represents the signal object.

5-125

xPCSignal Class

Property C# Declaration Syntax Description

UserData public Object UserData {get;
set;}

Get and set user-defined object that
you can use to store and retrieve
additional information.

Width public virtual int Width
{get;}

Get signal width.

5-126

xPCSignals Class

Purpose Access signal objects

Syntax public class xPCSignals : xPCApplicationObject

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignals : xPCApplicationObject initializes a
new instance of the xPCSignals class.

Methods

Method Description

xPCSignals.GetSignals List of xPCSignal objects specified by array of signal identifiers

xPCSignals.GetSignalsValueVector of signal values from array

xPCSignals.Refresh Refresh state of object

Properties

Property C# Declaration Syntax Description Exception

NumSignalspublic int
NumSignals {get;}

Get total numbers of
signals available in
target application.

this public xPCSignal
Item[int signalIdx]
{get;} or

public xPCSignal
Item[string blkPath
] {get;}

Return reference to
xPCSignal object
specified by its signal
identifier (signalIdx) or
signal name (blkPath).

signalIdx is a 32–bit
integer that identifies
the signal.

xPCException — When
problem occurs, query
xPCException object
Reason property.

ArgumentNullException
— signalIdx or

5-127

xPCSignals Class

Property C# Declaration Syntax Description Exception

blkPath is a string that
specifies the block path
name for the signal.

blkPath is NULL
reference.

5-128

xPCStateLogger Class

Purpose Access to state log

Syntax public class xPCStateLogger : xPCLog

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCStateLogger : xPCLog initializes a new instance
of the xPCStateLogger class.

Properties

The xPCStateLogger class inherits its other properties from xPCLog
Class.

Property C# Declaration Syntax Description

DataLogging-
Objects

public
IList<xPCDataLoggingObject>
DataLoggingObjects {get;}

Get collection of
xPCDataLoggingObject items
available for state logging.

IsEnabled public override bool
IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.

Item public xPCDataLoggingObject
Item[int index] {get;}

Get reference to the
xPCLoggingObject that
corresponds to index (state
index). index is a 32–bit integer.

NumStates public int NumStates {get;} Get the number of states.

5-129

xPCTargetPC Class

Purpose Access target computer

Syntax public xPCTargetPC()

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC
class.

Constructor

Constructor Description

xPCTargetPC Construct xPCTargetPC object.

Methods

Method Description

xPCTargetPC.Connect Establish connection to target computer

xPCTargetPC.ConnectAsyncAsynchronous request for target computer connection

xPCTargetPC.Disconnect Disconnect from target computer

xPCTargetPC.DisconnectAsyncAsynchronous request to disconnect from target computer

xPCTargetPC.Dispose Clean up used resources

xPCTargetPC.Load Load target application onto target computer

xPCTargetPC.LoadAsync Asynchronous request to load target application onto target
computer

xPCTargetPC.Ping Test communication between host and target computers

xPCTargetPC.Reboot Restart target computer

xPCTargetPC.RebootAsyncAsynchronous request to restart target computer

xPCTargetPC.tcpPing Determine TCP/IP accessibility of remote computer

5-130

xPCTargetPC Class

Method Description

xPCTargetPC.Unload Unload target application from target computer

xPCTargetPC.UnloadAsyncAsynchronous request to unload target application from target
computer

Events

Event Description

xPCTargetPC.ConnectCompletedEvent when xPCTargetPC.ConnectAsync is complete

xPCTargetPC.Connected Event after xPCTargetPC.Connect is complete

xPCTargetPC.Connecting Event before xPCTargetPC.Connect starts

xPCTargetPC.DisconnectCompletedEvent when xPCTargetPC.DisconnectAsync is complete

xPCTargetPC.DisconnectedEvent after xPCTargetPC.Disconnect is complete

xPCTargetPC.DisconnectingEvent before xPCTargetPC.Disconnect starts

xPCTargetPC.Disposed Event after xPCTargetPC.Dispose is complete

xPCTargetPC.LoadCompletedEvent when xPCTargetPC.LoadAsync is complete

xPCTargetPC.Loaded Event after xPCTargetPC.Load is complete

xPCTargetPC.Loading Event before xPCTargetPC.Load starts

xPCTargetPC.RebootCompletedEvent when xPCTargetPC.RebootAsync is complete

xPCTargetPC.Rebooted Event after xPCTargetPC.Reboot is complete

xPCTargetPC.Rebooting Event before xPCTargetPC.Reboot starts

xPCTargetPC.UnloadCompletedEvent when xPCTargetPC.UnloadAsync is complete

xPCTargetPC.Unloaded Event after xPCTargetPC.Unload is complete

xPCTargetPC.Unloading Event before xPCTargetPC.Unload starts

5-131

xPCTargetPC Class

Properties

Property C# Declaration
Syntax

Description Exception

Application public
xPCApplication
Application {get;}

Get reference to an
xPCApplication
object that you can
use to interface with
the target application.
If no communication
is established, the
property returns a
NULL object.

Communication-
TimeOut

public int
CommunicationTimeOut
{get; set;}

Get or set the
communication
timeout in seconds.

xPCException —
When problem occurs,
query xPCException
object Reason
property.

Component public IComponent
Component {get;}

Get component
associated with
the ISite when
implemented by a
class.

Container public IContainer
Container {get;}

Get the IContainer
associated with
the ISite when
implemented by a
class.

Container-
Control

public
ContainerControl
ContainerControl
{get; set;}

Provide
focus-management
functionality for
controls that can
function as containers
for other controls.

5-132

xPCTargetPC Class

Property C# Declaration
Syntax

Description Exception

DLMFileName public string
DLMFileName {get;
set;}

Get or set the full path
to the DLM file name.

Echo public bool Echo
{get; set;}

Get or set the target
display on the target
computer.

xPCException —
When problem occurs,
query xPCException
object Reason
property.

FileSystem public
xPCFileSystem
FileSystem {get;}

Get a reference to
an xPCFileSystem
object that you can
use to interface with
the target file system.
If no communication
is established, the
property returns a
NULL object.

HostTarget-
Comm

public XPCProtocol
HostTargetComm
{get; set;}

Get or set the
physical medium
for communication.
See xPCProtocol
Enumerated Data
Type.

IsConnected public bool
IsConnected {get;}

Get connection status
(established or not)
to a remote target
computer.

IsConnecting-
Busy

public bool
IsConnectingBusy
{get;}

Get ConnectAsync
request status (in
progress or not).

5-133

xPCTargetPC Class

Property C# Declaration
Syntax

Description Exception

IsDiscon-
nectingBusy

public bool
IsDisconnectingBusy
{get;}

Get whether a
DisconnectAsync
request is in progress.

IsLoadingBusy public bool
IsLoadingBusy
{get;}

Gets LoadAsync
request status (in
progress or not).

IsRebooting-
Busy

public bool
IsRebootingBusy
{get;}

Get RebootAsync
request status (in
progress or not).

IsUnloading-
Busy

public bool
IsUnloadingBusy
{get;}

Gets unLoadingAsync
request status (in
progress or not).

RS232BaudRate public
XPCRS232BaudRate
RS232Baudrate {get;
set;}

Get or set baudrate for
serial connection. See
xPCRS232BaudRate
Enumerated Data
Type.

RS232HostPort public
XPCRS232CommPort
RS232HostPort {get;
set;}

Get or set the
serial COM port
for connection on
host computer.
The Simulink
Real-Time software
automatically
determines the
COM port on the
target computer. See
xPCRS232Comport
Enumerated Data
Type.

5-134

xPCTargetPC Class

Property C# Declaration
Syntax

Description Exception

SessionTime public double
SessionTime {get;}

Get the length of time
Simulink Real-Time
kernel has been
running on the target
computer.

xPCException —
When problem occurs,
query xPCException
object Reason
property.

Site public ISite Site
{get; set;}

Get or set site of the
control.

TargetPCName public string
TargetPCName {get;
set;}

Get or set a value
indicating the target
computer name
associated with the
target computer.

TcpIpTarget-
Address

public string
TcpIpTargetAddress
{get; set;}

Get or set a valid IP
address for your target
computer.

TcpIpTarget-
Port

public string
TcpIpTargetPort
{get; set;}

Get or set the TCP/IP
target port. The
default is 22222 and
should not cause
problems. This
number is higher
than the reserved area
(for example, the port
numbers reserved for
telnet or ftp). The
software uses this
value only for the
target computer.

5-135

xPCTargetScope Class

Purpose Access to target scopes

Syntax public class xPCTargetScope : xPCScope

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScope : xPCScope initializes a new
instance of the xPCTargetScope class.

Methods

The xPCTargetScope class inherits methods from xPCScope Class.

Events

The xPCTargetScope class inherits events from xPCScope Class.

Properties

The xPCTargetScope class inherits its other properties from xPCScope
Class.

Property C# Declaration
Syntax

Description Exception

Display-
Mode

public SCDISPLAYMODE
DisplayMode {get;
set;}

Get or set scope mode
for displaying signals.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Grid public bool Grid
{get; set;}

Get or set status of grid
line for particular scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5-136

xPCTargetScope Class

Property C# Declaration
Syntax

Description Exception

Signals public
xPCTargetScope-
SignalCollection
Signals {get;}

Get the collection
of target scope
signals xPCTarget-
ScopeSignalCollection
that you assign to this
scope object.

Trigger-
Signal

public
xPCTgtScopeSignal
TriggerSignal {get;
set;}

Get or set target
scope signal
xPCTgtScopeSignal
used to trigger the
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

YLimit public double[]
YLimit {get; set;}

Get or set y-axis
minimum andmaximum
limits for scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5-137

xPCTargetScopeCollection Class

Purpose Collection of xPCTargetScope objects

Syntax public class xPCTargetScopeCollection : xPCScopeCollection<xPCTargetSc
ope>

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeCollection :
xPCScopeCollection<xPCTargetSc ope> initializes collection of
xPCTargetScope objects.

Methods

Method Description

xPCTargetScopeCollection.AddCreate xPCTargetScope object with the next available scope
ID as key

xPCTargetScopeCollection.RefreshRefresh target scope object state

xPCTargetScopeCollection.StartAllStart all target scopes in one call

xPCTargetScopeCollection.StopAllStop all target scopes in one call

5-138

xPCTargetScopeSignalCollection Class

Purpose Collection of xPCHostScopeSignal objects

Syntax public class xPCTargetScopeSignalCollection : xPCScopeSignalCollection

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeSignalCollection :
xPCScopeSignalCollection .

Methods

Method Description

xPCTargetScopeSignalCollection.AddCreate xPCTargetScopeSignal object

xPCTargetScopeSignalCollection.RefreshSynchronize signals for associated target scopes on target
computer

Properties

Property C# Declaration
Syntax

Description Exception

Item public
xPCTgtScopeSignal
Item[string
blkpath] {get;}

Get
xPCTgtScopeSignal
object from signal name
(blkpath).

blkpath is the signal
name that represents
a signal object
added to its parent
xPCTargetScope object.

This property returns
the file scope signal

xPCException—When
problem occurs, query
xPCException object
Reason property.

5-139

xPCTargetScopeSignalCollection Class

Property C# Declaration
Syntax

Description Exception

object as type
xPCTgtScopeSignal.

5-140

xPCTETLogger Class

Purpose Access to task execution time (TET) logger

Syntax public class xPCTETLogger : xPCLog

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTETLogger : xPCLog initializes a new instance of
the xPCTETLogger class.

Properties The xPCTETLogger class inherits its other properties from xPCLog
Class.

Properties C# Declaration Syntax Description

DataLogObject public
xPCDataLoggingObject
DataLogObject {get;}

Get TET data logging object.

IsEnabled public override bool
IsEnabled {get;}

Get whether to enable or
disable logging.

Overrides
xPCLog.IsEnabled.

5-141

xPCTgtScopeSignal Class

Purpose Access to target scope signals

Syntax public class xPCTgtScopeSignal : xPCScopeSignal

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTgtScopeSignal : xPCScopeSignal initializes
access to target scope signals.

Properties

Property C# Declaration
Syntax

Description Exception

Numerical
Format

public string
NumericalFormat
{get; set;}

Get and set numerical
format for the numeric
displayed signal
associated with this
object.

xPCException—When
problem occurs, query
xPCException object
Reason property.

Scope public
xPCTargetScope
Scope {get;}

Get parent target
scope xPCTargetScope
object.

5-142

xPCTimeLogger Class

Purpose Access to output log

Syntax public class xPCTimeLogger : xPCLog

Description Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTimeLogger : xPCLog initializes a new instance of
the xPCTimeLogger class.

Properties The xPCTimeLogger class inherits its other properties from xPCLog
Class.

Properties C# Declaration Syntax Description

DataLogObjects public
xPCDataLoggingObject
DataLogObject {get;}

Get the
xPCDataLoggingObject of
the time log.

IsEnabled public override bool
IsEnabled {get;}

Get whether to enable or
disable logging.

Overrides
xPCLog.IsEnabled.

5-143

xPCFileInfo.Open

Purpose Open file

Syntax public xPCFileStream Open(xPCFileMode fileMode)

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public xPCFileStream Open(xPCFileMode fileMode) opens file with
specified mode. This method returns the xPCFileStream object for the
file. See xPCFileMode Enumerated Data Type for file mode options.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-144

xPCFileInfo.OpenRead

Purpose Create read-only xPCFileStream object

Syntax public xPCFileStream OpenRead()

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public xPCFileStream OpenRead() creates a read-only
xPCFileStream object. This method returns the xPCFileStream object
for the file.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-145

xPCTargetPC.Ping

Purpose Test communication between host and target computers

Syntax public bool Ping()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public bool Ping() tests the communication between host and target
computers. This method returns a Boolean value.

5-146

xPCFileStream.Read

Purpose Read block of bytes from stream and write data to buffer

Syntax public int Read(byte[] buffer, int offset, int count)

Description Class: xPCFileStream Class

Method

Syntax Language: C#

public int Read(byte[] buffer, int offset, int count) reads
a block of bytes from the file stream. It then writes the data to the
specified buffer, buffer. buffer specifies the size in bytes and is a
byte structure (8-bit unsigned integer). When this method returns, it
contains the byte array with the values between offset and (offset +
count - 1), replaced by the bytes read from the current source. offset is
an integer. It specifies the byte offset in the array at which the method
places the read bytes. count is an integer. It specifies the number of
bytes to read from the stream. This method returns the total number
of bytes the method reads into the buffer. This number might be less
than the number of bytes requested if that number of bytes are not
currently available. It can also be zero if the method reaches the end of
the stream.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-147

xPCTargetPC.Reboot

Purpose Restart target computer

Syntax public void Reboot()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void Reboot() restarts the target computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-148

xPCTargetPC.RebootAsync

Purpose Asynchronous request to restart target computer

Syntax public void RebootAsync()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void RebootAsync() begins an asynchronous request to
restart a target computer.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-149

xPCTargetPC.RebootCompleted

Purpose Event when xPCTargetPC.RebootAsync is complete

Syntax public event RebootCompletedEventHandler RebootCompleted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event RebootCompletedEventHandler RebootCompleted
occurs when an asynchronous restart operation is complete.

5-150

xPCTargetPC.Rebooted

Purpose Event after xPCTargetPC.Reboot is complete

Syntax public event EventHandler Rebooted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Rebooted occurs after a target computer
restart is complete.

5-151

xPCTargetPC.Rebooting

Purpose Event before xPCTargetPC.Reboot starts

Syntax public event EventHandler Rebooting

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Rebooting occurs before a restart
operation executes.

5-152

xPCFileScopeCollection.Refresh

Purpose Synchronize with file scopes on target computer

Syntax public override void Refresh()

Description Class: xPCFileScopeCollection Class

Method

Syntax Language: C#

public override void Refresh() synchronizes with file scopes on
target computer.

Overrides xPCScopeCollection<xPCFileScope>.Refresh().

5-153

xPCScopes.RefreshAll

Purpose Refresh state of object

Syntax public void RefreshAll()

Description Class: xPCScopes Class

Method

Syntax Language: C#

public void RefreshAll() refreshes state of object.

5-154

xPCDriveInfo.Refresh

Purpose Synchronize with file drives on target computer

Syntax public void Refresh()

Description Class: xPCDriveInfo Class

Method

Syntax Language: C#

public void Refresh() synchronizes with file drives on target
computer.

5-155

xPCFileScopeSignalCollection.Refresh

Purpose Synchronize with signals for associated scope on target computer

Syntax public override void Refresh()

Description Class: xPCFileScopeSignalCollection Class

Method

Syntax Language: C#

public override void Refresh() synchronizes with signals for
associated file scopes on target computer.

Overrides xPCScopeCollection<xPCFileScopeSignal>.Refresh().

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-156

xPCHostScopeCollection.Refresh

Purpose Refresh host scope object state

Syntax public override void Refresh()

Description Class: xPCHostScopeCollection Class

Method

Syntax Language: C#

public override void Refresh() refreshes host scope object state.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-157

xPCHostScopeSignalCollection.Refresh

Purpose Synchronize signals for associated host scopes on target computer

Syntax public override void Refresh()

Description Class: xPCHostScopeSignalCollection Class

Method

Syntax Language: C#

public override void Refresh() synchronizes signals for associated
host scopes on target computer.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-158

xPCParameters.Refresh

Purpose Refresh state of object

Syntax public override void Refresh()

Description Class: xPCParameters Class

Method

Syntax Language: C#

public override void Refresh() refreshes the state of the object.

5-159

xPCSignals.Refresh

Purpose Refresh state of object

Syntax public void Refresh()

Description Class: xPCSignals Class

Method

Syntax Language: C#

public void Refresh() refreshes the state of the object.

5-160

xPCTargetScopeCollection.Refresh

Purpose Refresh target scope object state

Syntax public override void Refresh()

Description Class: xPCTargetScopeCollection Class

Method

Syntax Language: C#

public override void Refresh() refreshes target scope object state.

Overrides xPCScopeCollection<xPCTargetScope>.Refresh().

5-161

xPCTargetScopeSignalCollection.Refresh

Purpose Synchronize signals for associated target scopes on target computer

Syntax public override void Refresh()

Description Class: xPCTargetScopeSignalCollection Class

Method

Syntax Language: C#

public override void Refresh() synchronizes signals for associated
target scopes on target computer.

Overrides xPCScopeSignalCollection<xPCTgtScopeSignal>.Refresh().

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-162

xPCFileSystem.RemoveFile

Purpose Remove file name from target computer

Syntax public void RemoveFile(string fileName)

Description Class: xPCFileSystem Class

Method

Syntax Language: C#

public void RemoveFile(string fileName) removes the specified
file name from the target computer. fileName is a string that specifies
the full path name to the file you want to remove.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-163

xPCFileInfo.Rename

Purpose Rename file

Syntax public xPCFileInfo Rename(string newName)

Description Class: xPCFileInfo Class

Method

Syntax Language: C#

public xPCFileInfo Rename(string newName) changes file name to
newName. newName is a string. This method returns the xPCFileInfo
object.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-164

xPCParameters.SaveParameterSet

Purpose Save parameter values of target application

Syntax public void SaveParameterSet(string fileName)

Description Class: xPCParameters Class

Method

Syntax Language: C#

public void SaveParameterSet(string fileName) saves parameter
values of the target application in a file. fileName is a string that
represents the file to contain the saved parameter values.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-165

SCDISPLAYMODE Enumerated Data Type

Purpose Target scope display mode values

Syntax public enum SCDISPLAYMODE

Description Enumerated Data Type

Syntax Language: C#

public enum SCDISPLAYMODE specifies target scope display mode
values.

Members

Member Description

NUMERICAL Specifies target scope drawing mode to display numerical value.

REDRAW Specifies target scope drawing mode to redraw mode.

SLIDING Specifies target scope drawing mode to sliding mode.

ROLLING Specifies target scope drawing mode to rolling mode.

5-166

SCFILEMODE Enumerated Data Type

Purpose Write mode values for when file allocation table entry is updated

Syntax public enum SCFILEMODE

Description Enumerated Data Type

Syntax Language: C#

public enum SCFILEMODE specifies write mode values for when file
allocation table entry is updated.

Members

Member Description

LAZY Enables lazy write mode.

COMMIT Enables commit write mode.

5-167

xPCScope.ScopeStarted

Purpose Event after xPCScope.Start is complete

Syntax public event EventHandler ScopeStarted

Description Class: xPCScope Class

Event

Syntax Language: C#

public event EventHandler ScopeStarted occurs after a scope start
command is complete.

5-168

xPCScope.ScopeStarting

Purpose Event before xPCScope.Start executes

Syntax public event EventHandler ScopeStarting

Description Class: xPCScope Class

Event

Syntax Language: C#

public event EventHandler ScopeStarting occurs before a scope
executes.

5-169

xPCScope.ScopeStopped

Purpose Event after xPCScope.Stop is complete

Syntax public event EventHandler ScopeStarting

Description Class: xPCScope Class

Event

Syntax Language: C#

public event EventHandler ScopeStarting occurs after a scope
completes a manual stop command.

5-170

xPCScope.ScopeStopping

Purpose Event before xPCScope.Stop executes

Syntax public event EventHandler ScopeStopping

Description Class: xPCScope Class

Event

Syntax Language: C#

public event EventHandler ScopeStopping occurs before a scope
completes a manual stop.

5-171

SCSTATUS Enumerated Data Type

Purpose Scope status values

Syntax public enum SCSTATUS

Description Enumerated Data Type

Syntax Language: C#

public enum SCSTATUS specifies scope status values.

Members

Member Description

WAITTOSTART Scope is ready and waiting to start.

WAITFORTRIG Scope is finished with the preacquiring state and waiting for a
trigger. If the scope does not preacquire data, it enters the wait
for trigger state.

ACQUIRING Scope is acquiring data. The scope enters this state when it
leaves the wait for trigger state.

FINISHED Scope is finished acquiring data when it has attained the
predefined limit.

INTERRUPTED The user has stopped (interrupted) the scope.

PREACQUIRING Scope acquires a predefined number of samples before triggering.

5-172

SCTRIGGERMODE Enumerated Data Type

Purpose Scope trigger mode values

Syntax public enum SCTRIGGERMODE

Description Enumerated Data Type

Syntax Language: C#

public enum SCTRIGGERMODE specifies scope trigger mode values.

Members

Member Description

FREERUN There is no external trigger condition.. The scope triggers when
it is ready to trigger, regardless of the circumstances.

SOFTWARE Only user intervention can trigger the scope, and it can do so
regardless of circumstances. No other triggering is possible.

SIGNAL Signal must cross a value before the scope is triggered.

SCOPE Scope is triggered by another scope at a predefined trigger point
of the triggering scope. You modify this trigger point with the
value of TriggerScopeSample.

5-173

SCTRIGGERSLOPE Enumerated Data Type

Purpose Scope trigger slope values

Syntax public enum SCTRIGGERSLOPE

Description Enumerated Data Type

Syntax Language: C#

public enum SCTRIGGERSLOPE specifies scope trigger slope values.

Members

Member Description

EITHER The trigger slope can be rising or falling.

RISING The trigger signal value must be rising when it crosses the
trigger value.

FALLING The trigger signal value must be falling when it crosses the
trigger value.

5-174

SCTYPE Enumerated Data Type

Purpose Scope type

Syntax public enum SCTYPE

Description Enumerated Data Type

Syntax Language: C#

public enum SCTYPE specifies scope type.

Members

Member Description

HOST Specifies scope as type host.

TARGET Specifies scope as type target.

FILE Specifies scope as type file.

5-175

xPCFileSystem.SetCurrentDirectory

Purpose Current folder

Syntax public void SetCurrentDirectory(string path)

Description Class: xPCFileSystem Class

Method

Syntax Language: C#

public void SetCurrentDirectory(string path) sets the current
folder to the specified path name on the target computer. path is a
string that specifies the full path name to the folder you want to make
current.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-176

xPCParameter.SetParam

Purpose Change value of parameter on target computer

Syntax public void SetParam(double[] values)

Description Class: xPCParameter Class

Method

Syntax Language: C#

public void SetParam(double[] values) sets the parameter to
values. Parameter values is a vector of doubles, assumed to be the size
required by the parameter type.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-177

xPCParameter.SetParamAsync

Purpose Asynchronous request to change parameter value on target computer

Syntax public void SetParamAsync(double[] values)
public void SetParamAsync(double[] values, Object taskId)

Description Class: xPCParameter Class

Method

Syntax Language: C#

public void SetParamAsync(double[] values) begins an
asynchronous request to set parameter values to values on the target
computer. This method does not block the calling thread. values is a
vector of double values to which to set the parameter values.

public void SetParamAsync(double[] values, Object taskId)
receives a user-defined object when it completes its asynchronous
request. values is a vector of double values to which to set the
parameter values. taskId is a user-defined object that you can have
passed to the SetParamAsync method upon completion.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-178

xPCParameter.SetParamCompleted

Purpose Event when xPCParameter.SetParamAsync is complete

Description Class: xPCParameter Class

Event

Syntax Language: C#

public event SetParamCompletedEventHandler
SetParamCompleted occurs when an asynchronous set
parameter operation is complete.

5-179

xPCApplication.Start

Purpose Start target application execution

Syntax public void Start()

Description Class: xPCApplication Class

Method

Syntax Language: C#

public void Start() starts the target application simulation.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-180

xPCFileScopeCollection.StartAll

Purpose Start all file scopes in one call

Syntax public void StartAll()

Description Class: xPCFileScopeCollection Class

Method

Syntax Language: C#

public void StartAll() sequentially starts all file scopes using one
call. This method starts all the file scopes in the xPCFileScopeCollection.

5-181

xPCHostScopeCollection.StartAll

Purpose Start all host scopes in one call

Syntax public void StartAll()

Description Class: xPCHostScopeCollection Class

Method

Syntax Language: C#

public void StartAll() sequentially starts all host scopes
using one call. This method starts all the host scopes in the
xPCHostScopeCollection.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-182

xPCTargetScopeCollection.StartAll

Purpose Start all target scopes in one call

Syntax public void StartAll()

Description Class: xPCTargetScopeCollection Class

Method

Syntax Language: C#

public void StartAll() sequentially starts all target scopes
using one call. This method starts all the target scopes in the
xPCTargetScopeCollection.

5-183

xPCScope.Start

Purpose Start scope

Syntax public void Start()

Description Class: xPCScope Class

Method

Syntax Language: C#

public void Start() starts execution of scope on target computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-184

xPCApplication.Started

Purpose Event after xPCApplication.Start is complete

Syntax public event EventHandler Started

Description Class: xPCApplication Class

Event

Syntax Language: C#

public event EventHandler Started occurs after a target application
start command is complete.

5-185

xPCApplication.Starting

Purpose Event before xPCApplication.Start executes

Syntax public event EventHandler Starting

Description Class: xPCApplication Class

Event

Syntax Language: C#

public event EventHandler Starting occurs before a target
application start command executes.

5-186

xPCApplication.Stop

Purpose Stop target application execution

Syntax public void Stop()

Description Class: xPCApplication Class

Method

Syntax Language: C#

public void Stop() stops the target application simulation.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-187

xPCFileScopeCollection.StopAll

Purpose Stop all file scopes in one call

Syntax public void StopAll()

Description Class: xPCFileScopeCollection Class

Method

Syntax Language: C#

public void StopAll() stops all file scopes using one call. This
method stops all the file scopes in the xPCFileScopeCollection.

5-188

xPCHostScopeCollection.StopAll

Purpose Stop all host scopes in one call

Syntax public void StopAll()

Description Class: xPCHostScopeCollection Class

Method

Syntax Language: C#

public void StopAll() sequentially stops all host scopes
using one call. This method stops all the host scopes in the
xPCHostScopeCollection.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-189

xPCTargetScopeCollection.StopAll

Purpose Stop all target scopes in one call

Syntax public void StopAll()

Description Class: xPCTargetScopeCollection Class

Method

Syntax Language: C#

public void StopAll() sequentially stops all target scopes
using one call. This method stops all the target scopes in the
xPCTargetScopeCollection.

5-190

xPCScope.Stop

Purpose Stop scope

Syntax public void Stop()

Description Class: xPCScope Class

Method

Syntax Language: C#

public void Stop() stops execution of scope on target computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-191

xPCApplication.Stopped

Purpose Event after xPCApplication.Stop is complete

Syntax public event EventHandler Stopped

Description Class: xPCApplication Class

Event

Syntax Language: C#

public event EventHandler Stopped occurs after a target application
stop command is complete.

5-192

xPCApplication.Stopping

Purpose Event before xPCApplication.Stop executes

Syntax public event EventHandler Stopping

Description Class: xPCApplication Class

Event

Syntax Language: C#

public event EventHandler Stopping occurs before a target
application stop command executes.

5-193

xPCTargetPC.tcpPing

Purpose Determine TCP/IP accessibility of remote computer

Syntax public bool tcpPing()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public bool tcpPing() allows a target application to determine
whether a remote computer is accessible on the TCP/IP network. This
method returns a Boolean value.

5-194

xPCScope.Trigger

Purpose Software-trigger start of data acquisition for scope

Syntax public void Trigger()

Description Class: xPCScope Class

Method

Syntax Language: C#

public void Trigger() software-triggers start of data acquisition
for current scope.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-195

xPCSignal.TryGetValue

Purpose Status of get signal value at moment of request

Syntax public virtual bool TryGetValue(ref double result)

Description Class: xPCSignal Class

Method

Syntax Language: C#

public virtual bool TryGetValue(ref double result) returns the
status of get signal value at moment of request. If the software detects
an error, this method returns false. Otherwise, the method returns true.

5-196

xPCTargetPC.Unload

Purpose Unload target application from target computer

Syntax public void Unload()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void Unload() unloads a target application from a target
computer.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-197

xPCTargetPC.UnloadAsync

Purpose Asynchronous request to unload target application from target computer

Syntax public void UnloadAsync()

Description Class: xPCTargetPC Class

Method

Syntax Language: C#

public void UnloadAsync() begins an asynchronous request to
unload a target application from a target computer.

Exception Exception Condition

InvalidOperation-
Exception

When another thread uses this method.

5-198

xPCTargetPC.UnloadCompleted

Purpose Event when xPCTargetPC.UnloadAsync is complete

Syntax public event UnloadCompletedEventHandler UnloadCompleted

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event UnloadCompletedEventHandler UnloadCompleted
occurs when an asynchronous target application unload operation is
complete.

5-199

xPCTargetPC.Unloaded

Purpose Event after xPCTargetPC.Unload is complete

Syntax public event EventHandler Unloaded

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Unloaded occurs after a target
application unload from the target computer is complete.

5-200

xPCTargetPC.Unloading

Purpose Event before xPCTargetPC.Unload starts

Syntax public event EventHandler Unloading

Description Class: xPCTargetPC Class

Event

Syntax Language: C#

public event EventHandler Unloading occurs before a target
application unload from a target computer starts.

5-201

xPCFileStream.Write

Purpose Write block of bytes to file stream

Syntax public void Write(byte[] buffer, int count)

Description Class: xPCFileStream Class

Method

Syntax Language: C#

public void Write(byte[] buffer, int count) writes data from a
block of bytes, buffer, to the current file stream. buffer contains the
data to write to the stream. It is a byte structure. count is an integer.
It specifies the number of bytes to write to the current file stream.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-202

xPCFileStream.WriteByte

Purpose Write byte to current position in file stream

Syntax public void WriteByte(byte value)

Description Class: xPCFileStream Class

Method

Syntax Language: C#

public void WriteByte(byte value) writes a byte to the current
position in the file stream. value contains the byte of data that the
method writes to the file stream.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-203

xPCAppStatus Enumerated Data Type

Purpose Target application status return values

Syntax public enum xPCAppStatus

Description Enumerated Data Type

Syntax Language: C#

public enum xPCAppStatus specifies target application status return
values.

Members

Member Description

Stopped Target application is stopped

Running Target application is running

5-204

xPCDirectoryInfo

Purpose Construct new instance of xPCDirectoryInfo class on specified path

Syntax public xPCDirectoryInfo(xPCTargetPC tgt, string path)

Description Class: xPCDirectoryInfo Class

Constructor

Syntax Language: C#

public xPCDirectoryInfo(xPCTargetPC tgt, string path)
initializes a new instance of the xPCDirectoryInfo class on the path,
path. tgt is an xPCTargetPC object that represents the target computer
for which you initialize the class. path is a string that represents the
path on which to create the xPCDirectoryInfo object.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-205

xPCDriveInfo

Purpose Construct new instance of xPCDriveInfo class

Syntax public xPCDriveInfo(xPCTargetPC tgt, string driveName)

Description Class: xPCDriveInfo Class

Constructor

Syntax Language: C#

public xPCDriveInfo(xPCTargetPC tgt, string driveName)
initializes a new instance of the xPCDriveInfo class. tgt is an
xPCTargetPC object that represents the target computer for which
you want to the return drive information. driveName is a string that
represents the name of the drive.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-206

xPCException

Purpose Construct new instance of xPCException class

Syntax public xPCException()
public xPCException(string message)
public xPCException(string message, Exception inner)
public xPCException(SerializationInfo info, StreamingContext context)
public xPCException(int errId, string message, xPCTargetPC tgt)

Description Class: xPCException Class

Constructor

Syntax Language: C#

public xPCException() initializes a new instance of the xPCException
class.

public xPCException(string message) initializes a new instance of
the xPCException class with message. message is a string that contains
the text of the error message.

public xPCException(string message, Exception inner)
initializes a new instance of the xPCException class with message and
inner. message is a string. inner is a nested Exception object.

public xPCException(SerializationInfo info,
StreamingContext context) initializes a new instance of
the xPCException class with serialization information, info, and
streaming context, context. info is a SerializationInfo object. context
is a StreamingContext object.

public xPCException(int errId, string message, xPCTargetPC
tgt) initializes a new instance of the xPCException class. errID
is a 32–bit integer that contains the error ID numbers as defined
in matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h.
message is an error message string. tgt is the xPCTargetPC object
that raised the error.

5-207

xPCExceptionReason Enumerated Data Type

Purpose Exception reasons

Syntax public enum xPCExceptionReason

Description Enumerated Data Type

Syntax Language: C#

public enum xPCExceptionReason specifies the reasons for an
exception. See “C API Error Messages” for definitions.

5-208

xPCFileInfo

Purpose Construct new instance of xPCFileInfo class

Syntax public xPCFileInfo(xPCTargetPC tgt, string fileName)

Description Class: xPCFileInfo Class

Constructor

Syntax Language: C#

public xPCFileInfo(xPCTargetPC tgt, string fileName)
initializes a new instance of the xPCFileInfo class. tgt is an
xPCTargetPC object that represents the target computer for which you
want to return the file information. fileName is a string that represents
the name of the file. It is a fully qualified name of the new file, or the
relative file name in the target computer file system.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-209

xPCFileMode Enumerated Data Type

Purpose Open file with permissions

Syntax public enum xPCFileMode

Description Enumerated Data Type

Syntax Language: C#

public enum xPCFileMode specifies how the target computer is to open
a file with permissions.

Members

Member Description

CreateWrite Open file for writing and discard existing contents.

CreateReadWrite Open or create file for reading and writing and discard existing
contents

OpenRead Open file for reading

OpenReadWrite Open (but do not create) file for reading and writing

AppendWrite Open or create file for writing and append data to end of file

AppendReadWrite Open or create file for reading and writing and append data to
end of file

5-210

xPCFileStream

Purpose Construct new instance of xPCFileStream class

Syntax public xPCFileStream(xPCTargetPC tgt, string path, xPCFileMode fmode)

Description Class: xPCFileStream Class

Method

Syntax Language: C#

public xPCFileStream(xPCTargetPC tgt, string path,
xPCFileMode fmode) initializes a new instance of the xPCFileStream
class with the path name and creation mode. tgt is a reference to an
xPCTargetPC object. path is a relative or absolute path name for the
file that the current xPCFileStream object encapsulates. fmode is an
xPCFileMode constant that determines how to open or create the file.
See xPCFileMode Enumerated Data Type for file mode options.

Exception Exception Condition

xPCException When problem occurs, query xPCException
object Reason property.

5-211

xPCFileSystemInfo

Purpose Construct new instance of xPCFileSystemInfo class

Syntax public xPCFileSystemInfo(xPCTargetPC tgt)

Description Class: xPCFileSystemInfo Class

Constructor

Syntax Language: C#

public xPCFileSystemInfo(xPCTargetPC tgt) initializes a new
instance of the xPCFileSystemInfo class. tgt is an xPCTargetPC object
that represents the target computer for which you want the file system
information.

5-212

xPCLogMode Enumerated Data Type

Purpose Specify log mode values

Syntax public enum xPCLogMode

Description Enumerated Data Type

Syntax Language: C#

public enum xPCLogMode specifies log mode values.

Members

Member Description

Normal Time-equidistant logging to log data point at every time interval.

Value Log data point only when output signal from OutputLog
increments by a specified value

5-213

xPCLogType Enumerated Data Type

Purpose Logging type values

Syntax public enum xPCLogType

Description Enumerated Data Type

Syntax Language: C#

public enum xPCLogType specifies logging type values.

Members

Member Description

OUTPUTLOG Output log

STATELOG State log

TIMELOG Time log

TETLOG TET log

5-214

xPCProtocol Enumerated Data Type

Purpose Host computer and target computer communication medium

Syntax public enum XPCProtocol

Description Enumerated Data Type

Syntax Language: C#

public enum XPCProtocol specifies host computer and target
computer communication medium.

Members

Member Description

RS232 Serial communication

Note RS-232 Host-Target communication mode will be removed
in a future release. Use TCP/IP instead.

TCPIP TCP/IP communication

5-215

xPCRS232BaudRate Enumerated Data Type

Purpose Serial communication baud rate

Syntax public enum XPCRS232BaudRate

Description Enumerated Data Type

Syntax Language: C#

public enum XPCRS232BaudRate specifies serial communication baud
rate

Members

Member Description

BAUD1200 1200 baud rate

BAUD2400 2400 baud rate

BAUD4800 4800 baud rate

BAUD9600 9600 baud rate

BAUD19200 19200 baud rate

BAUD38400 38400 baud rate

BAUD57600 57600 baud rate

BAUD115200 115200 baud rate

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

5-216

xPCRS232Comport Enumerated Data Type

Purpose Serial communication port

Syntax public enum XPCRS232CommPort

Description Enumerated Data Type

Syntax Language: C#

public enum XPCRS232CommPort specifies values of the supported
serial communication ports used for the connection on the host
computer.

Members

Member Description

COM1 Serial port COM 0

COM2 Serial port COM 1

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

5-217

xPCTargetPC

Purpose Construct new instance of xPCTargetPC class

Syntax public xPCTargetPC()

Description Class: xPCTargetPC Class

Constructor

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC
class.

5-218

6

Simulink Real-Time API
Reference for C

• “C API Error Messages” on page 6-2

• “C API Structures and Functions — Alphabetical List” on page 6-6

6 Simulink® Real-Time™ API Reference for C

C API Error Messages
The header file matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h
defines these error messages.

Message Description

ECOMPORTACCFAIL COM port access failed

ECOMPORTISOPEN COM port is already opened

ECOMPORTREAD ReadFile failed while reading from COM port

ECOMPORTWRITE WriteFile failed while writing to COM port

ECOMTIMEOUT timeout while receiving: check serial link

EFILEOPEN Error opening file

EFILEREAD Error reading file

EFILERENAME Error renaming file

EFILEWRITE Error writing file

EINTERNAL Internal Error

EINVADDR Invalid IP Address

EINVARGUMENT Invalid Argument

EINVALIDMODEL Model name does not match saved value

EINVBAUDRATE Invalid value for baudrate

EINVCOMMTYP Invalid communication type

EINVCOMPORT COM port can only be 0 or 1 (COM1 or COM2)

EINVDECIMATION Decimation must be positive

EINVFILENAME Invalid file name

EINVINSTANDALONE
Command not valid for StandAlone

EINVLGDATA Invalid lgdata structure

EINVLGINCR Invalid increment for value equidistant
logging

EINVLGMODE Invalid Logging mode

EINVLOGID Invalid log identifier

6-2

C API Error Messages

Message Description

EINVNUMPARAMS Invalid number of parameters

EINVNUMSIGNALS Invalid number of signals

EINVPARIDX Invalid parameter index

EINVPORT Invalid Port Number

EINVSCIDX Invalid Scope Index

EINVSCTYPE Invalid Scope type

EINVSIGIDX Invalid Signal index

EINVTRIGMODE Invalid trigger mode

EINVTRIGSLOPE Invalid Trigger Slope Value

EINVTRSCIDX Invalid Trigger Scope index

EINVNUMSAMP Number of samples must be nonnegative

EINVSTARTVAL Invalid value for "start"

EINVTFIN Invalid value for TFinal

EINVTS Invalid value for Ts (must be between 8e-6
and 10)

EINVWSVER Invalid Winsock version (1.1 needed)

EINVXPCVERSION Target has an invalid version of Simulink
Real-Time

ELOADAPPFIRST Load the application first

ELOGGINGDISABLED Logging is disabled

EMALFORMED Malformed message

EMEMALLOC Memory allocation error

ENODATALOGGED No data has been logged

ENOERR No error

ENOFREEPORT No free Port in C API

ENOMORECHANNELS No more channels in scope

ENOSPACE Space not allocated

EOUTPUTLOGDISABLEDOutput Logging is disabled

6-3

6 Simulink® Real-Time™ API Reference for C

Message Description

EPARNOTFOUND Parameter not found

EPARSIZMISMATCH Parameter Size mismatch

EPINGCONNECT Could not connect to Ping socket

EPINGPORTOPEN Error opening Ping port

EPINGSOCKET Ping socket error

EPORTCLOSED Port is not open

ERUNSIMFIRST Run simulation first

ESCFINVALIDFNAME Invalid filename tag used for dynamic file
name

ESCFISNOTAUTO Autorestart must be enabled for dynamic file
names

ESCFNUMISNOTMULT MaxWriteFileSize must be a multiple of the
writesize

ESCTYPENOTTGT Scope Type is not "Target"

ESIGLABELNOTFOUND Signal label not found

ESIGLABELNOTUNIQUEAmbiguous signal label (signal labels are not
unique)

ESIGNOTFOUND Signal not found

ESOCKOPEN Socket Open Error

ESTARTSIMFIRST Start simulation first

ESTATELOGDISABLED State Logging is disabled

ESTOPSCFIRST Stop scope first

ESTOPSIMFIRST Stop simulation first

ETCPCONNECT TCP/IP Connect Error

ETCPREAD TCP/IP Read Error

ETCPTIMEOUT TCP/IP timeout while receiving data

ETCPWRITE TCP/IP Write error

ETETLOGDISABLED TET Logging is disabled

6-4

C API Error Messages

Message Description

ETGTMEMALLOC Target memory allocation failed

ETIMELOGDISABLED Time Logging is disabled

ETOOMANYSAMPLES Too Many Samples requested

ETOOMANYSCOPES Too many scopes are present

ETOOMANYSIGNALS Too many signals in Scope

EUNLOADAPPFIRST Unload the application first

EUSEDYNSCOPE Use DYNAMIC_SCOPE flag at compile time

EWRITEFILE LoadDLM: WriteFile Error

EWSINIT WINSOCK: Initialization Error

EWSNOTREADY Winsock not ready

6-5

6 Simulink® Real-Time™ API Reference for C

C API Structures and Functions — Alphabetical List

6-6

dirStruct

Purpose Type definition for file system folder information structure

Syntax typedef struct {
char Name[8];
char Ext[3];
char Day;
int Month;
int Year;
int Hour;
int Min;
int isDir;
unsigned long Size;

} dirStruct;

Fields Name This value contains the name of the file or
folder.

Ext This value contains the file type of the
element, if the element is a file (isDir is 0).
If the element is a folder (isDir is 1), this
field is empty.

Day This value contains the day the file or folder
was last modified.

Month This value contains the month the file or
folder was last modified.

Year This value contains the year the file or folder
was last modified.

Hour This value contains the hour the file or folder
was last modified.

Min This value contains the minute the file or
folder was last modified.

6-7

dirStruct

isDir This value indicates if the element is a file
(0) or folder (1). If it is a folder, Bytes has a
value of 0.

Size This value contains the size of the file in
bytes. If the element is a folder, this value
is 0.

Description The dirStruct structure contains information for a folder in the file
system.

See Also API function xPCFSDirItems

6-8

diskinfo

Purpose Type definition for file system disk information structure

Syntax typedef struct {
char Label[12];
char DriveLetter;
char Reserved[3];
unsigned int SerialNumber;
unsigned int FirstPhysicalSector;
unsigned int FATType;
unsigned int FATCount;
unsigned int MaxDirEntries;
unsigned int BytesPerSector;
unsigned int SectorsPerCluster;
unsigned int TotalClusters;
unsigned int BadClusters;
unsigned int FreeClusters;
unsigned int Files;
unsigned int FileChains;
unsigned int FreeChains;
unsigned int LargestFreeChain;

} diskinfo;

Fields Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial
number.

FirstPhysicalSector This value contains the logical block
addressing (LBA) address of the logical drive
boot record. For 3.5-inch disks, this value is 0.

6-9

diskinfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for
FAT-12, FAT-16, or FAT-32 volumes,
respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root folder.
For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including folders, on the volume. This
number excludes the root folder and files that
have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

6-10

diskinfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The diskinfo structure contains information for file system disks.

See Also API function xPCFSDiskInfo

6-11

fileinfo

Purpose Type definition for file information structure

Syntax typedef struct {
int FilePos;
int AllocatedSize;
int ClusterChains;
int VolumeSerialNumber;
char FullName[255];
}fileinfo;

Fields FilePos This value contains the current file pointer.

AllocatedSize This value contains the currently allocated
file size.

ClusterChains This value indicates how many separate
cluster chains are allocated for the file.

VolumeSerialNumber This value holds the serial number of the
volume the file resides on.

FullName This value contains a copy of the complete
path name of the file. This field is valid only
while the file is open.

Description The fileinfo structure contains information for files in the file system.

See Also xPCFSFileInfo

6-12

lgmode

Purpose Type definition for logging options structure

Syntax typedef struct {
int mode;
double incrementvalue;

} lgmode;

Fields mode This value indicates the type of logging you want.
Specify LGMOD_TIME for time-equidistant logging.
Specify LGMOD_VALUE for value-equidistant
logging.

incrementvalue If you set mode to LGMOD_VALUE for
value-equidistant data, this option specifies
the increment (difference in amplitude) value
between logged data points. A data point is
logged only when an output signal or a state
changes by incrementvalue.

If you set mode to LGMOD_TIME, incrementvalue
is ignored.

Description The lgmode structure specifies data logging options. The mode variable
accepts either the numeric values 0 or 1 or their equivalent constants
LGMOD_TIME or LGMOD_VALUE from xpcapiconst.h.

See Also API functions xPCSetLogMode, xPCGetLogMode

6-13

scopedata

Purpose Type definition for scope data structure

Syntax typedef struct {
int number;
int type;
int state;
int signals[10];
int numsamples;
int decimation;
int triggermode;
int numprepostsamples;
int triggersignal
int triggerscope;
int triggerscopesample;
double triggerlevel;
int triggerslope;

} scopedata;

Fields number The scope number.

type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are one of the following:

1 Host

2 Target

state Indicates the scope state. Values are one of
the following:

0 Waiting to start

1 Scope is waiting for a trigger

2 Data is being acquired

3 Acquisition is finished

4 Scope is stopped (interrupted)

6-14

scopedata

5 Scope is preacquiring data

signals List of signal indices from the target object
to display on the scope.

numsamples Number of contiguous samples captured
during the acquisition of a data package.

decimation A number, N, meaning every Nth sample is
acquired in a scope window.

triggermode Trigger mode for a scope. Values are one of
the following:

0 FreeRun (default)

1 Software

2 Signal

3 Scope

numprepostsamples If this value is less than 0, this is the number
of samples to be saved before a trigger event.
If this value is greater than 0, this is the
number of samples to skip after the trigger
event before data acquisition begins.

triggersignal If triggermode is 2 (Signal), identifies the
block output signal to use for triggering
the scope. Identify the signal with a signal
index.

triggerscope If triggermode is 3 (Scope), identifies the
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.

triggerscopesample If triggermode is 3 (Scope), specifies the
number of samples to be acquired by the
triggering scope before triggering a second
scope. This must be a nonnegative value.

6-15

scopedata

triggerlevel If triggermode is 2 (Signal), indicates the
value the signal has to cross to trigger the
scope to start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

triggerslope If triggermode is 2 (Signal), indicates
whether the trigger is on a rising or falling
signal. Values are:

0 Either rising or falling (default)

1 Rising

2 Falling

Description The scopedata structure holds the data about a scope used in the
functions xPCGetScope and xPCSetScope. In the structure, the fields
are as in the various xPCGetSc* functions (for example, state is as in
xPCScGetState, signals is as in xPCScGetSignals, etc.). The signal
vector is an array of the signal identifiers, terminated by -1.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetType,
xPCScGetState, xPCScGetSignals, xPCScGetNumSamples,
xPCScGetDecimation, xPCScGetTriggerMode,
xPCScGetNumPrePostSamples, xPCScGetTriggerSignal,
xPCScGetTriggerScope, xPCScGetTriggerLevel,
xPCScGetTriggerSlope

6-16

xPCAddScope

Purpose Create new scope

Prototype void xPCAddScope(int port, int scType, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scType Enter the type of scope.

scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Description The xPCAddScope function creates a new scope on the target computer.
For scType, scopes can be of type host or target, depending on the
value of scType:

• SCTYPE_HOST for type host

• SCTYPE_TARGET for type target

• SCTYPE_FILE for type file

Constants for scType are defined in the header file xpcapiconst.h as
SCTYPE_HOST, SCTYPE_TARGET, and SCTYPE_FILE.

Calling the xPCAddScope function with scNum having the number of
an existing scope produces an error. Use xPCGetScopes to find the
numbers of existing scopes.

See Also API functions xPCScAddSignal, xPCScRemSignal, xPCRemScope,
xPCSetScope, xPCGetScope, xPCGetScopes

Target object method SimulinkRealTime.target.addscope

6-17

xPCAverageTET

Purpose Return average task execution time

Prototype double xPCAverageTET(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCAverageTET function returns the average task execution time
(TET) for the target application.

Description The xPCAverageTET function returns the TET for the target application.
You can use this function when the target application is running or
when it is stopped.

See Also API functions xPCMaximumTET, xPCMinimumTET

Property AvgTET of SimulinkRealTime.target

6-18

xPCCloseConnection

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCCloseConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCCloseConnection function closes the RS-232 or
TCP/IP communication channel opened by xPCOpenSerialPort,
xPCOpenTcpIpPort, or xPCOpenConnection. Unlike xPCClosePort,
it preserves the connection information such that a subsequent
call to xPCOpenConnection succeeds without the need to
resupply communication data such as the IP address or port
number. To completely close the communication channel, call
xPCDeRegisterTarget. Calling the xPCCloseConnection function
followed by calling xPCDeRegisterTarget is equivalent to calling
xPCClosePort.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCReOpenPort, xPCRegisterTarget,
xPCDeRegisterTarget

6-19

xPCClosePort

Purpose Close RS-232 or TCP/IP communication connection

Prototype void xPCClosePort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCClosePort function closes the RS-232 or TCP/IP communication
channel opened by either xPCOpenSerialPort or by xPCOpenTcpIpPort.
Calling this function is equivalent to calling xPCCloseConnection and
xPCDeRegisterTarget.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenSerialPort, xPCOpenTcpIpPort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCRegisterTarget,
xPCDeRegisterTarget

Target object method SimulinkRealTime.target.close

6-20

xPCDeRegisterTarget

Purpose Delete target communication properties from Simulink Real-Time API
library

Prototype void xPCDeRegisterTarget(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCDeRegisterTarget function causes the Simulink Real-Time
API library to completely “forget” about the target communication
properties. You use this at the end of a session in which you use
xPCOpenConnection and xPCCloseConnection to connect and
disconnect from the target without entering the properties each time.
It works similarly to xPCClosePort, but does not close the connection
to the target computer. Before calling this function, you must first
call the function xPCCloseConnection to close the connection to the
target computer. The combination of calling the xPCCloseConnection
and xPCDeRegisterTarget functions has the same result as calling
xPCClosePort.

See Also API functions xPCRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

6-21

xPCErrorMsg

Purpose Return text description for error message

Prototype char *xPCErrorMsg(int error_number, char *error_message);

Arguments error_number Enter the constant of an error.

error_message The xPCErrorMsg function copies the error message
string into the buffer pointed to by error_message.
error_message is then returned. You can later use
error_message in a function such as printf.

If error_message is NULL, the xPCErrorMsg
function returns a pointer to a statically allocated
string.

Return The xPCErrorMsg function returns a string associated with the error
error_number.

Description The xPCErrorMsg function returns error_message, which makes
it convenient to use in a printf or similar statement. Use the
xPCGetLastError function to get the constant for which you are getting
the message.

See Also API functions xPCSetLastError, xPCGetLastError

6-22

xPCFreeAPI

Purpose Unload Simulink Real-Time DLL

Prototype void xPCFreeAPI(void);

Description The xPCFreeAPI function unloads the Simulink Real-Time dynamic
link library. You must execute this function once at the end of the
application to unload the Simulink Real-Time API DLL. This frees the
memory allocated to the functions. This function is defined in the file
xpcinitfree.c. Link this file with your application.

See Also API functions xPCInitAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6-23

xPCFSCD

Purpose Change current folder on target computer to specified path

Prototype void xPCFSCD(int port, char *dir);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dir Enter the path on the target computer to change to.

Description The xPCFSCD function changes the current folder on the target computer
to the path specified in dir. Use the xPCFSGetPWD function to show the
current folder of the target computer.

See Also API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.cd

6-24

xPCFSCloseFile

Purpose Close file on target computer

Prototype void xPCFSCloseFile(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Description The xPCFSCloseFile function closes the file associated with fileHandle
on the target computer. fileHandle is the handle of a file previously
opened by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile, xPCFSWriteFile

File object method SimulinkRealTime.fileSystem.fclose

6-25

xPCFSDir

Purpose Get contents of specified folder on target computer

Prototype void xPCFSDir(int port, const char *path, char
*data, int numbytes);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.

data The contents of the folder are stored in data, whose
allocated size is specified in numbytes.

numbytes Enter the size, in bytes, of the array data.

Description The xPCFSDir function copies the contents of the target computer
folder specified by path into data. The xPCFSDir function returns the
listing in the data array, which must be of size numbytes. Use the
xPCFSDirSize function to obtain the size of the folder listing for the
numbytes parameter.

See Also API function xPCFSDirSize

File object method SimulinkRealTime.fileSystem.dir

6-26

xPCFSDirItems

Purpose Get contents of specified folder on target computer

Prototype void xPCFSDirItems(int port, const char *path, dirStruct
*dirs, int numDirItems);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.

dirs Enter the structure to contain the contents of the folder.

numDirItems Enter the number of items in the folder.

Description The xPCFSDirItems function copies the contents of the target computer
folder specified by path. The xPCFSDirItems function copies the listing
into the dirs structure, which must be of size numDirItems. Use the
xPCFSDirStructSize function to obtain the size of the folder for the
numDirItems parameter.

See Also API functions xPCFSDirStructSize, dirStruct

File object method SimulinkRealTime.fileSystem.dir

6-27

xPCFSDirSize

Purpose Return size of specified folder listing on target computer

Prototype int xPCFSDirSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return The xPCFSDirSize function returns the size, in bytes, of the specified
folder listing. If this function detects an error, it returns -1.

Description The xPCFSDirSize function returns the size, in bytes, of the buffer
required to list the folder contents on the target computer. Use this size
as the numbytes parameter in the xPCFSDir function.

See Also API function xPCFSDirItems

File object method SimulinkRealTime.fileSystem.dir

6-28

xPCFSDirStructSize

Purpose Get number of items in folder

Prototype int xPCFSDirStructSize(int port, const char *path);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return The xPCFSDirStructSize function returns the number of items in
the folder on the target computer. If this function detects an error, it
returns -1.

Description The xPCFSDirStructSize function returns the number of items in
the folder on the target computer. Use this size as the numDirItems
parameter in the xPCFSDirItems function.

See Also API function xPCFSDir

File object method SimulinkRealTime.fileSystem.dir

6-29

xPCFSDiskInfo

Purpose Information about target computer file system

Prototype diskinfo xPCFSDiskInfo(int port, const char *driveletter);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

driveletter Enter the drive letter of the file system
for which you want information.

Description The xPCFSDiskInfo function returns disk information for the file
system of the specified target computer drive, driveletter. This
function returns this information in the diskinfo structure.

See Also API structure SimulinkRealTime.fileSystem.diskinfo

6-30

xPCFSFileInfo

Purpose Return information for open file on target computer

Prototype fileinfo xPCFSFileInfo(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on
the target computer.

Description The xPCFSFileInfo function returns information about the specified
open file, filehandle, in a structure of type fileinfo.

See Also Structure SimulinkRealTime.fileSystem.fileinfo

6-31

xPCFSGetError

Purpose Get text description for error number on target computer file system

Prototype void xPCFSGetError(int port, unsigned int error_number,
char *error_message);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

error_number Enter the constant of an error.

error_message The string of the message associated with the
error error_number is stored in error_message.

Description The xPCFSGetError function gets the error_message associated with
error_number. This enables you to use the error message in a printf
or similar statement.

6-32

xPCFSGetFileSize

Purpose Return size of file on target computer

Prototype int xPCFSGetFileSize(int port, int fileHandle);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Return Return the size of the specified file in bytes. If this function detects an
error, it returns -1.

Description The xPCFSGetFileSize function returns the size, in bytes, of the file
associated with fileHandle on the target computer. fileHandle is the
handle of a file previously opened by the xPCFSOpenFile function.

See Also API functions xPCFSOpenFile, xPCFSReadFile

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

6-33

xPCFSGetPWD

Purpose Get current folder of target computer

Prototype void xPCFSGetPWD(int port, char *pwd);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

pwd The path of the current folder is stored in pwd.

Description The xPCFSGetPWD function places the path of the current folder on the
target computer in pwd, which must be allocated by the caller.

See Also File object method SimulinkRealTime.fileSystem.pwd

6-34

xPCFSMKDIR

Purpose Create new folder on target computer

Prototype void xPCFSMKDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dirname Enter the name of the folder to create on the target
computer.

Description The xPCFSMKDIR function creates the folder dirname in the current
folder of the target computer.

See Also API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.mkdir

6-35

xPCFSOpenFile

Purpose Open file on target computer

Prototype int xPCFSOpenFile(int port, const char *filename,
const char *permission);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of the file to open on the target
computer.

permission Enter the read/write permission with which to
open the file. Values are r (read) or w (read/write).

Return The xPCFSOpenFile function returns the file handle for the opened file.
If function detects an error, it returns -1.

Description The xPCFSOpenFile function opens the specified file, filename, on
the target computer. If the file does not exist, the xPCFSOpenFile
function creates filename, then opens it. You can open a file for read
or read/write access.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSReadFile,
xPCFSWriteFile

File object methods SimulinkRealTime.fileSystem.fclose,
SimulinkRealTime.fileSystem.filetable,
SimulinkRealTime.fileSystem.fwrite
SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

6-36

xPCFSReadFile

Purpose Read open file on target computer

Prototype void xPCFSReadFile(int port, int fileHandle, int start,
int numbytes, unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

start Enter an offset from the beginning of the file from
which this function can start to read.

numbytes Enter the number of bytes this function is to read
from the file.

data The contents of the file are stored in data.

Description The xPCFSReadFile function reads an open file on the target
computer and places the results of the read operation in the array
data. fileHandle is the file handle of a file previously opened by
xPCFSOpenFile. You can specify that the read operation begin at the
beginning of the file (default) or at a certain offset into the file (start).
The numbytes parameter specifies how many bytes the xPCFSReadFile
function is to read from the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSWriteFile

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

6-37

xPCFSRemoveFile

Purpose Remove file from target computer

Prototype void xPCFSRemoveFile(int port, const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

filename Enter the name of a file on the target computer.

Description The xPCFSRemoveFile function removes the file named filename from
the target computer file system. filename can be a relative or absolute
path name on the target computer.

See Also File object method SimulinkRealTime.fileSystem.removefile

6-38

xPCFSRMDIR

Purpose Remove folder from target computer

Prototype void xPCFSRMDIR(int port, const char *dirname);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

dirname Enter the name of a folder on the target computer.

Description The xPCFSRMDIR function removes a folder named dirname from the
target computer file system. dirname can be a relative or absolute
path-name on the target computer.

See Also File object method SimulinkRealTime.fileSystem.rmdir

6-39

xPCFSScGetFilename

Purpose Get name of file for scope

Prototype const char *xPCFSScGetFilename(int port, int
scNum, char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename The name of the file for the specified scope is stored
in filename.

Return Returns the value of filename, the name of the file for the scope.

Description The xPCFSScGetFilename function returns the name of the file to which
scope scNum will save signal data. filename points to a caller-allocated
character array to which the filename is copied.

See Also API function xPCFSScSetFilename

Property Filename of SimulinkRealTime.fileSystem

6-40

xPCFSScGetWriteMode

Purpose Get write mode of file for scope

Prototype int xPCFSScGetWriteMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system maintains the actual file size.

Description The xPCFSScGetWriteMode function returns the write mode of the file
for the scope.

See Also API function xPCFSScSetWriteMode

Property WriteMode of SimulinkRealTime.fileSystem

6-41

xPCFSScGetWriteSize

Purpose Get block write size of data chunks

Prototype unsigned int xPCFSScGetWriteSize(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the block size, in bytes, of the data chunks.

Description The xPCFSScGetWriteSize function gets the block size, in bytes, of
the data chunks.

See Also API function xPCFSScSetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

6-42

xPCFSScSetFilename

Purpose Specify name for file to contain signal data

Prototype void xPCFSScSetFilename(int port, int scNum,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

filename Enter the name of a file to contain the signal data.

Description The xPCFSScSetFilename function sets the name of the file to which
the scope will save the signal data. The Simulink Real-Time software
creates this file in the target computer file system. Note that you can
only call this function when the scope is stopped.

See Also API function xPCFSScGetFilename

Property Filename of SimulinkRealTime.fileSystem

6-43

xPCFSScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype void xPCFSScSetWriteMode(int port, int scNum, int writeMode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Description The xPCFSScSetWriteMode function specifies when a file allocation
table (FAT) entry is updated. Both modes write the signal data to the
file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system maintains the actual file size.

See Also API function xPCFSScGetWriteMode

Property WriteMode of SimulinkRealTime.fileSystem

6-44

xPCFSScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype void xPCFSScSetWriteSize(int port, int scNum, unsigned int
writeSize);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

writeSize Enter the block size, in bytes, of the data chunks.

Description The xPCFSScSetWriteSize function specifies that a memory buffer
collect data in multiples of writeSize. By default, this parameter is 512
bytes, which is the typical disk sector size. Using a block size that is the
same as the disk sector size provides better performance. writeSize
must be a multiple of 512.

See Also API function xPCFSScGetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

6-45

xPCFSWriteFile

Purpose Write to file on target computer

Prototype void xPCFSWriteFile(int port, int fileHandle, int numbytes,
const unsigned char *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

numbytes Enter the number of bytes this function is to write
into the file.

data The contents to write to fileHandle are stored in
data.

Description The xPCFSWriteFile function writes the contents of the array data
to the file specified by fileHandle on the target computer. The
fileHandle parameter is the handle of a file previously opened by
xPCFSOpenFile. numbytes is the number of bytes to write to the file.

See Also API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSReadFile

6-46

xPCGetAPIVersion

Purpose Get version number of Simulink Real-Time API

Prototype const char *xPCGetAPIVersion(void);

Return The xPCGetApiVersion function returns a string with the version
number of the Simulink Real-Time kernel on the target computer.

Description The xPCGetApiVersion function returns a string with the version
number of the Simulink Real-Time kernel on the target computer. The
string is a constant string within the API DLL. Do not modify this
string.

See Also API function xPCGetTargetVersion

6-47

xPCGetAppName

Purpose Return target application name

Prototype char *xPCGetAppName(int port, char *model_name);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

model_name The xPCGetAppName function copies the target
application name string into the buffer pointed to by
model_name. model_name is then returned. You can
later use model_name in a function such as printf.

Note that the maximum size of the buffer is 256
bytes. To reserve enough space for the application
name string, allocate a buffer of size 256 bytes.

Return The xPCGetAppName function returns a string with the name of the
target application.

Description The xPCGetAppName function returns the name of the target application.
You can use the return value, model_name, in a printf or similar
statement. In case of error, the name string is unchanged.

Examples Allocate 256 bytes for the buffer appname.

char *appname=malloc(256);
xPCGetAppName(iport,appname);
appname=realloc(appname,strlen(appname)+1);
...
free(appname);

See Also API function xPCIsAppRunning

Target object property Application

6-48

xPCGetEcho

Purpose Return display mode for target message window

Prototype int xPCGetEcho(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetEcho function returns the number indicating the display
mode. Values are

1 Display is on. Messages are displayed in the message
display window on the target.

0 Display is off.

Return The xPCGetEcho function the display mode of the target computer
using communication channel port. If the function detects an error, it
returns -1.

Description The xPCGetEcho function returns the display mode of the target
computer using communication channel port. Messages include the
status of downloading the target application, changes to parameters,
and changes to scope signals.

See Also API function xPCSetEcho

6-49

xPCGetExecTime

Purpose Return target application execution time

Prototype double xPCGetExecTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetExecTime function returns the current execution time for a
target application. If the function detects an error, it returns -1.

Description The xPCGetExecTime function returns the current execution time for
the running target application. If the target application is stopped, the
value is the last running time when the target application was stopped.
If the target application is running, the value is the current running
time.

See Also API functions xPCSetStopTime, xPCGetStopTime

Property ExecTime of SimulinkRealTime.target

6-50

xPCGetLastError

Purpose Return constant of last error

Prototype int xPCGetLastError(void);

Return The xPCGetLastError function returns the error constant for the last
reported error. If the function did not detect an error, it returns 0.

Description The xPCGetLastError function returns the constant of the last reported
error by another API function. This value is reset every time you
call a new function. Therefore, you should check this constant value
immediately after a call to an API function. For a list of error constants
and messages, see “C API Error Messages”.

See Also API functions xPCErrorMsg, xPCSetLastError

6-51

xPCGetLoadTimeOut

Purpose Return timeout value for communication between host computer and
target computer

Prototype int xPCGetLoadTimeOut(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host computer and target
application. If the function detects an error, it returns -1.

Description The xPCGetLoadTimeOut function returns the number of seconds
allowed for the communication between the host computer and the
target application. When an Simulink Real-Time API function initiates
communication between the host computer and target computer,
it waits for a certain amount of time before checking to see if the
communication is complete. In the case where communication with the
target computer is not complete, the function returns a timeout error.

For example, when you load a new target application onto the target
computer, the function xPCLoadApp waits for a certain amount of time
before checking to see if the initialization of the target application is
complete. In the case where initialization of the target application is
not complete, the function xPCLoadApp returns a timeout error. By
default, xPCLoadApp checks for the readiness of the target computer
for up to 5 seconds. However, for larger models or models requiring
longer initialization (for example, those with thermocouple boards), the
default might not be long enough and a spurious timeout is generated.
Other functions that communicate with the target computer will wait
for timeOut seconds before declaring a timeout event. The function
xPCSetLoadTimeOut sets the timeout to a different number.

Use the xPCGetLoadTimeOut function if you suspect that the current
number of seconds (the timeout value) is too short. Then use the
xPCSetLoadTimeOut function to set the timeout to a higher number.

6-52

xPCGetLoadTimeOut

See Also API functions xPCLoadApp, xPCSetLoadTimeOut

xPCUnloadApp

“Increase the Time for Downloads”

6-53

xPCGetLogMode

Purpose Return logging mode and increment value for target application

Prototype lgmode xPCGetLogMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetLogMode function returns the logging mode in the lgmode
structure. If the logging mode is 1 (LGMOD_VALUE), this function also
returns an increment value in the lgmode structure. If an error occurs,
this function returns -1.

Description The xPCGetLogMode function gets the logging mode and increment
value for the current target application. The increment (difference
in amplitude) value is measured between logged data points. A data
point is logged only when an output signal or a state changes by the
increment value.

See Also API function xPCSetLogMode

API structure lgmode

6-54

xPCGetNumOutputs

Purpose Return number of outputs

Prototype int xPCGetNumOutputs(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumOutputs function returns the number of outputs in the
current target application. If the function detects an error, it returns -1.

Description The xPCGetNumOutputs function returns the number of outputs in the
target application. The number of outputs equals the sum of the input
signal widths of the output blocks at the root level of the Simulink
model.

See Also API functions xPCGetOutputLog, xPCGetNumStates, xPCGetStateLog

6-55

xPCGetNumParams

Purpose Return number of tunable parameters

Prototype int xPCGetNumParams(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumParams function returns the number of tunable
parameters in the target application. If the function detects an error, it
returns -1.

Description The xPCGetNumParams function returns the number of tunable
parameters in the target application. Use this function to see how many
parameters you can get or modify.

See Also API functions xPCGetParamIdx, xPCSetParam, xPCGetParam,
xPCGetParamName, xPCGetParamDims

Property NumParameters of SimulinkRealTime.target

6-56

xPCGetNumScopes

Purpose Return number of scopes added to target application

Prototype int xPCGetNumScopes(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumScopes function returns the number of scopes that have
been added to the target application. If the function detects an error, it
returns -1.

Description The xPCGetNumScopes function returns the number of scopes that have
been added to the target application.

6-57

xPCGetNumScSignals

Purpose Returns number of signals added to specific scope

Prototype int xPCGetNumScSignals(int port, int scopeId);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scopeId Enter the ID number of the scope for which you want to
get the number of added signals.

Return The xPCGetNumScSignals function returns the number of signals that
have been added to the scope, scopeID. If the function detects an error,
it returns -1.

Description The xPCGetNumScSignals function returns the number of signals that
have been added to the scope, scopeID.

6-58

xPCGetNumSignals

Purpose Return number of signals

Prototype int xPCGetNumSignals(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumSignals function returns the number of signals in the
target application. If the function detects an error, it returns -1.

Description The xPCGetNumSignals function returns the total number of signals in
the target application that can be monitored from the host. Use this
function to see how many signals you can monitor.

See Also API functions xPCGetSignalIdx, xPCGetSignal, xPCGetSignals,
xPCGetSignalName, xPCGetSignalWidth

Property NumSignals of SimulinkRealTime.target

6-59

xPCGetNumStates

Purpose Return number of states

Prototype int xPCGetNumStates(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetNumStates function returns the number of states in the
target application. If the function detects an error, it returns -1.

Description The xPCGetNumStates function returns the number of states in the
target application.

See Also API functions xPCGetStateLog, xPCGetNumOutputs, xPCGetOutputLog

Property StateLog of SimulinkRealTime.target

6-60

xPCGetOutputLog

Purpose Copy output log data to array

Prototype void xPCGetOutputLog(int port, int first_sample,
int num_samples,
int decimation, int output_id, double *output_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy every sample value or every
Nth value.

output_id Enter an output identification number.

output_data The log is stored in output_data, whose allocation
is the responsibility of the caller.

Description The xPCGetOutputLog function gets the output log and copies that
log to an array. You get the data for each output signal in turn by
specifying output_id. Output IDs range from 0 to (N-1), where N is the
return value of xPCGetNumOutputs. Entering 1 for decimation copies
all values. Entering N copies every Nth value.

For first_sample, the sample indices range from 0 to (N-1), where N is
the return value of xPCNumLogSamples. Get the maximum number of
samples by calling the function xPCNumLogSamples.

Note that the target application must be stopped before you get the
number.

6-61

xPCGetOutputLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTETLog, xPCGetTimeLog

Target object method SimulinkRealTime.target.getlog

Property OutputLog of SimulinkRealTime.target

6-62

xPCGetParam

Purpose Get parameter value and copy it to array

Prototype void xPCGetParam(int port, int paramIndex,
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Enter the index for a parameter.

paramValue The function returns a parameter value as an array
of doubles.

Description The xPCGetParam function returns the parameter as an array in
paramValue. paramValue must be large enough to hold the parameter.
You can query the size by calling the function xPCGetParamDims. Get
the parameter index by calling the function xPCGetParamIdx. The
parameter matrix is returned as a vector, with the conversion being
done in column-major format. It is also returned as a double, regardless
of the data type of the actual parameter.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCSetParam, xPCGetParamDims, xPCGetParamIdx,
xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

6-63

xPCGetParamDims

Purpose Get row and column dimensions of parameter

Prototype void xPCGetParamDims(int port, int paramIndex,
int *dimension);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIndex Parameter index.

dimension Dimensions (row, column) of a parameter.

Description The xPCGetParamDims function gets the dimensions (row, column) of
a parameter with paramIndex and stores them in dimension, which
must have at least two elements.

For paramIndex, values range from 0 to (N-1), where N is the return
value of xPCGetNumParams.

See Also API functions xPCGetParamIdx, xPCGetParamName, xPCSetParam,
xPCGetParam, xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

6-64

xPCGetParamIdx

Purpose Return parameter index

Prototype int xPCGetParamIdx(int port, const char *blockName,
const char *paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

blockName Enter the full block path generated by Simulink
Coder.

paramName Enter the parameter name for a parameter associated
with the block.

Return The xPCGetParamIdx function returns the parameter index for the
parameter name. If the function detects an error, it returns -1.

Description The xPCGetParamIdx function returns the parameter index for the
parameter name (paramName) associated with a Simulink block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

See Also API functions xPCGetParamDims, xPCGetParamName, xPCGetParam

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of
SimulinkRealTime.target

6-65

xPCGetParamName

Purpose Get name of parameter

Prototype void xPCGetParamName(int port, int paramIdx,
char *blockName, char
*paramName);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Enter a parameter index.

blockName String with the full block path generated by
Simulink Coder.

paramName Name of a parameter for a specific block.

Description The xPCGetParamName function gets the parameter name and block
name for a parameter with the index paramIdx. The block path
and name are returned and stored in blockName, and the parameter
name is returned and stored in paramName. You must allocate enough
space for both blockName and paramName. If the paramIdx is invalid,
xPCGetLastError returns nonzero, and the strings are unchanged. Get
the parameter index from the function xPCGetParamIdx.

See Also API functions xPCGetParam, xPCGetParamDims, xPCGetParamIdx

Properties ShowParameters and Parameters of
SimulinkRealTime.target

6-66

xPCGetSampleTime

Purpose Return target application sample time

Prototype double xPCGetSampleTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetSampleTime function returns the sample time, in seconds, of
the target application. If the function detects an error, it returns -1.

Description The xPCGetSampleTime function returns the sample time, in seconds,
of the target application. You can get the error by using the function
xPCGetLastError.

See Also API function xPCSetSampleTime

Property SampleTime of SimulinkRealTime.target

6-67

xPCGetScope

Purpose Get and copy scope data to structure

Prototype scopedata xPCGetScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCGetScope function returns a structure of type scopedata.

Description
Note The xPCGetScope function will be removed in a future release.
Use the xPCScGetScopePropertyName functions to access property
values instead. For example, to get the number of samples being
acquired in one data acquisition cycle, use xPCScGetNumSamples.

The xPCGetScope function gets properties of a scope with scNum and
copies the properties into a structure with type scopedata. You can
use this function in conjunction with xPCSetScope to change several
properties of a scope at one time. See scopedata for a list of properties.
Use the xPCGetScope function to get the scope number.

See Also API functions xPCSetScope, scopedata

Target object method SimulinkRealTime.target.getscope

6-68

xPCGetScopeList

Purpose Get and copy list of scope numbers

Prototype void xPCGetScopeList(int port, int *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by
the caller) as a list of unsorted integers.

Description The xPCGetScopeList function gets the list of scopes currently defined.
data must be large enough to hold the list of scopes. You can query the
size by calling the function xPCGetNumScopes.

Note Use the xPCGetScopeList function instead of the xPCGetScopes
function. The xPCGetScopes will be removed in a future release.

6-69

xPCGetScopes

Purpose Get and copy list of scope numbers

Prototype void xPCGetScopes(int port, int *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by
the caller) as a list of unsorted integers and terminated
by -1.

Description The xPCGetScopes function gets the list of scopes currently defined.
You can use the constant MAX_SCOPES (defined in xpcapiconst.h) as
the size of data. This is currently set to 30 scopes.

Note This function will be removed in a future release. Use the
xPCGetScopeList function instead.

See Also API functions xPCSetScope, xPCGetScope, xPCScGetSignals

Property Scopes of SimulinkRealTime.target

6-70

xPCGetSessionTime

Purpose Return length of time Simulink Real-Time kernel has been running

Prototype double xPCGetSessionTime(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Return The xPCGetSessionTime function returns the amount of time in seconds
that the Simulink Real-Time kernel has been running on the target
computer. If the function detects an error, it returns -1.

Description The xPCGetSessionTime function returns, as a double, the amount of
time in seconds that the Simulink Real-Time kernel has been running.
This value is also the time that has elapsed since you last booted the
target computer.

6-71

xPCGetSignal

Purpose Return value of signal

Prototype double xPCGetSignal(int port, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

sigNum Enter a signal number.

Return The xPCGetSignal function returns the current value of signal sigNum.
If the function detects an error, it returns -1.

Description The xPCGetSignal function returns the current value of a signal.
For vector signals, use xPCGetSignals rather than call this function
multiple times. Use the xPCGetSignalIdx function to get the signal
number.

See Also API function xPCGetSignals

Property Signals of SimulinkRealTime.target

6-72

xPCGetSignalIdx

Purpose Return index for signal

Prototype int xPCGetSignalIdx(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName Enter a signal name.

Return The xPCGetSignalIdx function returns the index for the signal with
name sigName. If the function detects an error, it returns -1.

Description The xPCGetSignalIdx function returns the index of a signal. The name
must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

See Also API functions xPCGetSignalName, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Target object method SimulinkRealTime.target.getsignalid

6-73

xPCGetSigIdxfromLabel

Purpose Return array of signal indices

Prototype int xPCGetSigIdxfromLabel(int port, const char
*sigLabel, int *sigIds);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigLabel String with the name of a signal label.

sigIds Return array of signal indices.

Return If xPCGetSigIdxfromLabel finds a signal, it fills an array sigIds with
signal indices and returns 0. If it finds no signal, it returns -1.

Description The xPCGetSigIdxfromLabel function returns in sigIds the array of
signal indices for signal sigName. This function assumes that you have
labeled the signal for which you request the indices (see the Signal
name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label. Signal labels must be unique.

sigIds must be large enough to contain the array of indices. You can
use the xPCGetSigLabelWidth function to get the required amount of
memory to be allocated by the sigIds array.

See Also API functions xPCGetSignalLabel, xPCGetSigLabelWidth

6-74

xPCGetSignalLabel

Purpose Copy label of signal to character array

Prototype char * xPCGetSignalLabel(int port, int sigIdx,
char *sigLabel);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter signal index.

sigLabel Return signal label associated with signal index, sigIdx.

Return The xPCGetSignalLabel function returns the label of the signal.

Description The xPCGetSignalLabel function copies and returns the signal label,
including the block path, of a signal with sigIdx. The result is stored
in sigLabel. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigLabel is unchanged. The function returns sigLabel,
which makes it convenient to use in a printf or similar statement.
This function assumes that you already know the signal index. Signal
labels must be unique.

This function assumes that you have labeled the signal for which you
request the index (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSigLabelWidth

6-75

xPCGetSigLabelWidth

Purpose Return number of elements in signal

Prototype int xPCGetSigLabelWidth(int port, const char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigName String with the name of a signal.

Return The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. If the function detects an error, it
returns -1.

Description The xPCGetSigLabelWidth function returns the number of elements
that the signal sigName contains. This function assumes that you have
labeled the signal for which you request the elements (see the Signal
name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal
name/label. Signal labels must be unique.

See Also API functions xPCGetSigIdxfromLabel, xPCGetSignalLabel

6-76

xPCGetSignalName

Purpose Copy name of signal to character array

Prototype char *xPCGetSignalName(int port, int sigIdx,
char *sigName);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter a signal index.

sigName String with the name of a signal.

Return The xPCGetSignalName function returns the name of the signal.

Description The xPCGetSignalName function copies and returns the signal name,
including the block path, of a signal with sigIdx. The result is stored
in sigName. If sigIdx is invalid, xPCGetLastError returns a nonzero
value, and sigName is unchanged. The function returns sigName, which
makes it convenient to use in a printf or similar statement. This
function assumes that you already know the signal index.

See Also API functions xPCGetSignalIdx, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Properties ShowSignals and Signals of SimulinkRealTime.target

6-77

xPCGetSignals

Purpose Return vector of signal values

Prototype int xPCGetSignals(int port, int numSignals,
const int *signals,
double *values);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

numSignals Enter the number of signals to be acquired (that is, the
number of values in signals).

signals Enter the list of signal numbers to be acquired.

values Returned values are stored in the double array values.

Return The xPCGetSignals function returns 0 if it completes execution without
detecting an error. If the function detects an error, it returns -1.

Description The xPCGetSignals function is the vector version of the function
xPCGetSignal. This function returns the values of a vector of signals
(up to 1000) as fast as it can acquire them. The signal values may not
be at the same time step (for that, define a scope of type SCTYPE_HOST
and use xPCScGetData). xPCGetSignal does the same thing for a single
signal, and could be used multiple times to achieve the same result.
However, the xPCGetSignals function is faster, and the signal values
are more likely to be spaced closely together. The signals are converted
to doubles regardless of the actual data type of the signal.

For signals, the list you provide should be stored in an integer array.
Get the signal numbers with the function xPCGetSignalIdx.

See Also API function xPCGetSignal, xPCGetSignalIdx

Example To reference signal vector data rather than scalar values, pass a vector
of indices for the signal data. For example:

6-78

xPCGetSignals

/**/

/* Assume a signal of width 10, with the blockpath

* mySubsys/mySignal and the signal index s1.

*/

int i;

int sigId[10];

double sigVal[10]; /* Signal values are stored here */

/* Get the ID of the first signal */

sigId[0] = xPCGetSignalIdx(port, "mySubsys/mySignal/s1");

if (sigId[0] == -1) {

/* Handle error */

}

for (i = 1; i < 10; i++) {

sigId[i] = sigId[0] + i;

}

xPCGetSignals(port, 10, sigId, sigVal);

/* If no error, sigVal should have the signal values */

/***/

To repeatedly get the signals, repeat the call to xPCGetSignals. If you
do not change sigID, you only need to call xPCGetSignalIdx once.

6-79

xPCGetSignalWidth

Purpose Return width of signal

Prototype int xPCGetSignalWidth(int port, int sigIdx);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigIdx Enter the index of a signal.

Return The xPCGetSignalWidth function returns the signal width for a signal
with sigIdx. If the function detects an error, it returns -1.

Description The xPCGetSignalWidth function returns the number of signals for a
specified signal index. Although signals are manipulated as scalars, the
width of the signal might be useful to reassemble the components into a
vector again. A signal’s width is the number of signals in the vector.

See Also API functions xPCGetSignalIdx, xPCGetSignalName, xPCGetSignal,
xPCGetSignals

6-80

xPCGetStateLog

Purpose Copy state log values to array

Prototype void xPCGetStateLog(int port, int first_sample,
int num_samples,
int decimation, int state_id, double *state_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the output
log.

decimation Select whether to copy all the sample values or every
Nth value.

state_id Enter a state identification number.

state_data The log is stored in state_data, whose allocation is
the responsibility of the caller.

Description The xPCGetStateLog function gets the state log. It then copies the
log into state_data. You get the data for each state signal in turn by
specifying the state_id. State IDs range from 1 to (N-1), where N is the
return value of xPCGetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

6-81

xPCGetStateLog

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumStates, xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

SimulinkRealTime.target.getlog

Property StateLog of SimulinkRealTime.target

6-82

xPCGetStopTime

Purpose Return stop time

Prototype double xPCGetStopTime(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCGetStopTime function returns the stop time as a double, in
seconds, of the target application. If the function detects an error, it
returns -10.0. If the stop time is infinity (run forever), this function
returns -1.0.

Description The xPCGetStopTime function returns the stop time, in seconds, of the
target application. This is the amount of time the target application
runs before stopping. If the function detects an error, it returns -10.0.
You will then need to use the function xPCGetLastError to find the
error number.

See Also API function xPCSetStopTime

Property StopTime of SimulinkRealTime.target

6-83

xPCGetTargetVersion

Purpose Get Simulink Real-Time kernel version

Prototype void xPCGetTargetVersion(int port, char *ver);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

ver The version is stored in ver.

Description The xPCGetTargetVersion function gets a string with the version
number of the Simulink Real-Time kernel on the target computer. It
then copies that version number into ver.

See Also xPCGetAPIVersion

6-84

xPCGetTETLog

Purpose Copy TET log to array

Prototype void xPCGetTETLog(int port, int first_sample,
int num_samples, int decimation,
double *TET_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the TET
log.

decimation Select whether to copy all the sample values or
every Nth value.

TET_data The log is stored in TET_data, whose allocation is
the responsibility of the caller.

Description The xPCGetTETLog function gets the task execution time (TET) log. It
then copies the log into TET_data. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For first_sample, the
sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTimeLog

SimulinkRealTime.target.getlog

Property TETLog of SimulinkRealTime.target

6-85

xPCGetTimeLog

Purpose Copy time log to array

Prototype void xPCGetTimeLog(int port, int first_sample,
int num_samples,
int decimation, double *time_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.

num_samples Enter the number of samples to copy from the
time log.

decimation Select whether to copy all the sample values or
every Nth value.

time_data The log is stored in time_data, whose allocation
is the responsibility of the caller.

Description The xPCGetTimeLog function gets the time log and copies the log into
time_data. This is especially relevant in the case of value-equidistant
logging, where the logged values might not be uniformly spaced in
time. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For first_sample, the sample indices range from 0
to (N-1), where N is the return value of xPCNumLogSamples. Use the
xPCNumLogSamples function to get the number of samples.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetStateLog, xPCGetTETLog, xPCSetLogMode, xPCGetLogMode

SimulinkRealTime.target.getlog

Property TimeLog of SimulinkRealTime.target

6-86

xPCInitAPI

Purpose Initialize Simulink Real-Time DLL

Prototype int xPCInitAPI(void);

Return The xPCInitAPI function returns 0 if it completes execution without
detecting an error. If the function detects an error, it returns -1.

Description The xPCInitAPI function initializes the Simulink Real-Time dynamic
link library. You must execute this function once at the beginning of the
application to load the Simulink Real-Time API DLL. This function is
defined in the file xpcinitfree.c. Link this file with your application.

See Also API functions xPCFreeAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6-87

xPCIsAppRunning

Purpose Return target application running status

Prototype int xPCIsAppRunning(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the target application is stopped, the xPCIsAppRunning function
returns 0. If the target application is running, this function returns 1.
If the function detects an error, it returns -1.

Description The xPCIsAppRunning function returns 1 or 0 depending on whether
the target application is stopped or running. If the function detects
is an error, use the function xPCGetLastError to check for the error
string constant.

See Also API function xPCIsOverloaded

Property Status of SimulinkRealTime.target

6-88

xPCIsOverloaded

Purpose Return target computer overload status

Prototype int xPCIsOverloaded(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return If the target application has overloaded the CPU, the xPCIsOverloaded
function returns 1. If it has not overloaded the CPU, the function
returns 0. If this function detects error, it returns -1.

Description The xPCIsOverloaded function checks if the target application has
overloaded the target computer and returns 1 if it has and 0 if it has
not. If the target application is not running, the function returns 0.

See Also API function xPCIsAppRunning

Property CPUoverload of SimulinkRealTime.target

6-89

xPCIsScFinished

Purpose Return data acquisition status for scope

Prototype int xPCIsScFinished(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return If a scope finishes a data acquisition cycle, the xPCIsScFinished
function returns 1. If the scope is in the process of acquiring data, this
function returns 0. If the function detects an error, it returns -1.

Description The xPCIsScFinished function returns a Boolean value depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for target scopes; however, because target
scopes restart immediately, it is almost impossible to find these scopes
in the finished state. Use the xPCGetScope function to get the scope
number.

See Also API function xPCScGetState

Scope object property Status

6-90

xPCLoadApp

Purpose Load target application onto target computer

Prototype void xPCLoadApp(int port, const char *pathstr,
const char *filename);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use a
string like "C:\\work".

filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example, in C
use a string like "xpcosc".

Description The xPCLoadApp function loads the compiled target application to the
target computer. pathstr must not contain the trailing backslash.
pathstr can be set to NULL or to the string 'nopath' if the application
is in the current folder. The variable filename must not contain the
target application extension.

Before returning, xPCLoadApp waits for a certain amount of time before
checking whether the model initialization is complete. In the case
where the model initialization is incomplete, xPCLoadApp returns a
timeout error to indicate a connection problem (for example, ETCPREAD).
By default, xPCLoadApp checks for target readiness five times, with
each attempt taking approximately 1 second (less if the target is ready).
However, for larger models or models requiring longer initialization (for
example, those with thermocouple boards), the default might not be
long enough and a spurious timeout can be generated. The functions
xPCGetLoadTimeOut and xPCSetLoadTimeOut control the number of
attempts made.

6-91

xPCLoadApp

See Also API functions xPCStartApp, xPCStopApp, xPCUnloadApp,
xPCSetLoadTimeOut, xPCGetLoadTimeOut

Target object method SimulinkRealTime.target.load

6-92

xPCLoadParamSet

Purpose Restore parameter values

Prototype void xPCLoadParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file that contains the saved
parameters.

Description The xPCLoadParamSet function restores the target application
parameter values saved in the file filename. This file must be located
on a local drive of the target computer. The parameter file must have
been saved from a previous call to xPCSaveParamSet.

See Also API function xPCSaveParamSet

6-93

xPCMaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype int xPCMaxLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCMaxLogSamples function returns the total number of samples.
If the function detects an error, it returns -1.

Description The xPCMaxLogSamples function returns the total number of samples
that can be returned in the logging buffers.

See Also API functions xPCNumLogSamples, xPCNumLogWraps, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property MaxLogSamples of SimulinkRealTime.target

6-94

xPCMaximumTET

Purpose Copy maximum task execution time to array

Prototype void xPCMaximumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMaximumTET function gets the maximum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the maximum TET was
achieved. The xPCMaximumTET function then copies these values into the
data array. The maximum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMinimumTET, xPCAverageTET

Property MaxTET of SimulinkRealTime.target

6-95

xPCMinimumTET

Purpose Copy minimum task execution time to array

Prototype void xPCMinimumTET(int port, double *data);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description The xPCMinimumTET function gets the minimum task execution time
(TET) that was achieved during the previous target application run.
This function also returns the time at which the minimum TET was
achieved. The xPCMinimumTET function then copies these values into the
data array. The minimum TET value is copied into the first element,
and the time at which it was achieved is copied into the second element.

See Also API functions xPCMaximumTET, xPCAverageTET

Property MinTET of SimulinkRealTime.target

6-96

xPCNumLogSamples

Purpose Return number of samples in log buffer

Prototype int xPCNumLogSamples(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogSamples function returns the number of samples in the
log buffer. If the function detects an error, it returns -1.

Description The xPCNumLogSamples function returns the number of samples in
the log buffer. In contrast to xPCMaxLogSamples, which returns the
maximum number of samples that can be logged (because of buffer
size constraints), xPCNumLogSamples returns the number of samples
actually logged.

Note that the target application must be stopped before you get the
number.

See Also API functions xPCGetStateLog, xPCGetOutputLog, xPCGetTETLog,
xPCGetTimeLog, xPCMaxLogSamples

6-97

xPCNumLogWraps

Purpose Return number of times log buffer wraps

Prototype int xPCNumLogWraps(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCNumLogWraps function returns the number of times the log
buffer wraps. If the function detects an error, it returns -1.

Description The xPCNumLogWraps function returns the number of times the log
buffer wraps.

See Also API functions xPCNumLogSamples, xPCMaxLogSamples, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property NumLogWraps of SimulinkRealTime.target

6-98

xPCOpenConnection

Purpose Open connection to target computer

Prototype void xPCOpenConnection(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCOpenConnection function opens a connection to the target
computer whose data is indexed by port. Before calling this function,
set up the target information by calling xPCRegisterTarget. A call to
either xPCOpenSerialPort or xPCOpenTcpIpPort can also set up the
target information. If the port is already open, calling this function
has no effect.

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCCloseConnection, xPCRegisterTarget

6-99

xPCOpenSerialPort

Purpose Open RS-232 connection to Simulink Real-Time system

Prototype int xPCOpenSerialPort(int comPort, int baudRate);

Arguments comPort Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

baudRate baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCOpenSerialPort function returns the port value for the
connection. If the function detects an error, it returns -1.

Description The xPCOpenSerialPort function initiates an RS-232 connection
to an Simulink Real-Time system. It returns the port value for the
connection. Be sure to pass this value to all the Simulink Real-Time
API functions that require a port value.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

See Also API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing, xPCOpenConnection, xPCCloseConnection,
xPCRegisterTarget, xPCDeRegisterTarget

6-100

xPCOpenTcpIpPort

Purpose Open TCP/IP connection to Simulink Real-Time system

Prototype int xPCOpenTcpIpPort(const char *ipAddress, const char
*ipPort);

Arguments ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

Return The xPCOpenTcpIpPort function returns a nonnegative integer that you
can then use as the port value for an Simulink Real-Time API function
that requires it. If this operation fails, this function returns -1.

Description The xPCOpenTcpIpPort function opens a connection to the TCP/IP
location specified by the IP address. It returns a nonnegative integer
if it succeeds. Use this integer as the ipPort variable in the Simulink
Real-Time API functions that require a port value. The global error
number is also set, which you can get using xPCGetLastError.

See Also API functions xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCTargetPing

6-101

xPCReboot

Purpose Reboot target computer

Prototype void xPCReboot(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description The xPCReboot function reboots the target computer. This function
returns nothing. This function does not close the connection to the
target computer. You should either explicitly close the port or call
xPCReOpenPort once the target computer has rebooted.

See Also API function xPCReOpenPort

Target object method SimulinkRealTime.target.reboot

6-102

xPCReOpenPort

Purpose Reopen communication channel

Prototype int xPCReOpenPort(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCReOpenPort function returns 0 if it reopens a connection without
detecting an error. If the function detects an error, it returns -1.

Description The xPCReOpenPort function reopens the communications channel
pointed to by port. The difference between this function and
xPCOpenSerialPort or xPCOpenTcpIpPort is that xPCReOpenPort uses
the already existing settings, while the other functions need to set up
the port.

See Also API functions xPCOpenTcpIpPort, xPCClosePort

6-103

xPCRegisterTarget

Purpose Register target with Simulink Real-Time API library

Prototype int xPCRegisterTarget(int commType, const char *ipAddress,
const char *ipPort, int comPort, int baudRate);

Arguments commType Specify the communication type (TCP/IP or RS-232)
between the host and the target.

Note RS-232 Host-Target communication mode will be
removed in a future release. Use TCP/IP instead.

ipAddress Enter the IP address of the target as a dotted decimal
string. For example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example,
"22222".

comPort comPort and baudRate are as in xPCOpenSerialPort.

baudRate The baudRate must be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCRegisterTarget function returns the port number. If the
function detects an error, it returns -1.

Description The xPCRegisterTarget function works similarly to
xPCOpenSerialPort and xPCOpenTcpIpPort, except that it does not
try to open a connection to the target computer. In other words,
xPCOpenSerialPort or xPCOpenTcpIpPort is equivalent to calling
xPCRegisterTarget with the required parameters, followed by a call to
xPCOpenConnection.

Use the constants COMMTYP_TCPIP and COMMTYP_RS232 for commType.
If commType is set to COMMTYP_RS232, the function ignores ipAddress

6-104

xPCRegisterTarget

and ipPort. Analogously, the function ignores comPort and baudRate if
commType is set to COMMTYP_TCPIP.

If you enter a value of 0 for baudRate, this function sets the baud rate to
the default value (115200).

See Also API functions xPCDeRegisterTarget, xPCOpenTcpIpPort,
xPCOpenSerialPort, xPCClosePort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCTargetPing

6-105

xPCRemScope

Purpose Remove scope

Prototype void xPCRemScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCRemScope function removes the scope with number scNum.
Attempting to remove a nonexistent scope causes an error. For a list
of existing scopes, see xPCGetScopes. Use the xPCGetScope function
to get the scope number.

See Also API functions xPCAddScope, xPCScRemSignal, xPCGetScopes

Target object method SimulinkRealTime.target.remscope

6-106

xPCSaveParamSet

Purpose Save parameter values of target application

Prototype void xPCSaveParamSet(int port, const char *filename);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file to contain the saved parameters.

Description The xPCSaveParamSet function saves the target application parameter
values in the file filename. This function saves the file on a local drive
of the current target computer. You can later reload these parameters
with the xPCLoadParamSet function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
Real-Time mode. Saving these values enable you to easily recreate
target application parameter values from a number of application runs.

See Also API function xPCLoadParamSet

6-107

xPCScAddSignal

Purpose Add signal to scope

Prototype void xPCScAddSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScAddSignal function adds the signal with number sigNum to
the scope scNum. The signal should not already exist in the scope. You
can use xPCScGetSignals to get a list of the signals already present.
Use the function xPCGetScope to get the scope number. Use the
xPCGetSignalIdx function to get the signal number.

See Also API functions xPCScRemSignal, xPCAddScope, xPCRemScope,
xPCGetScopes

Scope object methods SimulinkRealTime.fileScope.addsignal,
SimulinkRealTime.hostScope.addsignal, and
SimulinkRealTime.targetScope.addsignal

6-108

xPCScGetAutoRestart

Purpose Scope autorestart status

Prototype long xPCScGetAutoRestart(int port, int scNum)

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetAutoRestart function returns the autorestart flag value
of scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetAutoRestart function gets the autorestart flag value for
scope scNum. Autorestart flag can be disabled (0) or enabled (1).

See Also API functions xPCScSetAutoRestart

6-109

xPCScGetData

Purpose Copy scope data to array

Prototype void xPCScGetData(int port, int scNum, int
signal_id, int start,
int numsamples, int decimation, double *data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

signal_id Enter a signal number. Enter -1 to get time
stamped data.

start Enter the first sample from which data retrieval
is to start.

numsamples Enter the number of samples retrieved with a
decimation of decimation, starting from the start
value.

decimation Enter a value such that every decimation sample
is retrieved in a scope window.

data The data is available in the array data, starting
from sample start.

Description The xPCScGetData function gets the data used in a scope. Use this
function for scopes of type SCTYPE_HOST. The scope must be either
in state "Finished" or in state "Interrupted" for the data to be
retrievable. (Use the xPCScGetState function to check the state of the
scope.) The data must be retrieved one signal at a time. The calling
function must allocate the space ahead of time to store the scope data.
data must be an array of doubles, regardless of the data type of the
signal to be retrieved. Use the function xPCScGetSignals to get the list
of signals in the scope for signal_id. Use the function xPCGetScope to
get the scope number for scNum.

6-110

xPCScGetData

To get time stamped data, specify -1 for signal_id. From the output,
you can then get the number of nonzero elements.

See Also API functions xPCGetScope, xPCScGetState, xPCScGetSignals

Property Data of SimulinkRealTime.hostScope

6-111

xPCScGetDecimation

Purpose Return decimation of scope

Prototype int xPCScGetDecimation(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetDecimation function returns the decimation of scope
scNum. If the function detects an error, it returns -1.

Description The xPCScGetDecimation function gets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetDecimation

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-112

xPCScGetNumPrePostSamples

Purpose Get number of pre- or post-triggering samples before triggering scope

Prototype int xPCScGetNumPrePostSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumPrePostSamples function returns the number of
samples for pre- or posttriggering for scope scNum. If an error occurs,
this function returns the minimum integer value (-2147483647-1).

Description The xPCScGetNumPrePostSamples function gets the number of samples
for pre- or posttriggering for scope scNum. A negative number implies
pretriggering, whereas a positive number implies posttriggering
samples. Use the xPCGetScope function to get the scope number.

See Also API function xPCScSetNumPrePostSamples

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-113

xPCScGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype int xPCScGetNumSamples(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumSamples function returns the number of samples in
the scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetNumSamples function gets the number of samples in one
data acquisition cycle for scope scNum. Use the xPCGetScope function
to get the scope number.

See Also API function xPCScSetNumSamples

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-114

xPCScGetNumSignals

Purpose Get number of signals in scope

Prototype int xPCScGetNumSignals(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetNumSignals function returns the number of signals in the
scope scNum. If the function detects an error, it returns -1.

Description The xPCScGetNumSignals function gets the number of signals in the
scope scNum. Use the xPCGetScope function to get the scope number.

See Also API function xPCGetScope

6-115

xPCScGetSignalList

Purpose Copy list of signals to array

Prototype void xPCScGetSignalList(int port, int scNum, int *data)

Arguments port Value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

data Integer array allocated by the caller as a list containing
the signal identifiers.

Description The xPCScGetSignals function gets the list of signals defined for scope
scNum. The array data must be large enough to hold the list of signals.
To query the size, use the xPCScGetNumSignals function. Use the
xPCGetScope function to get the scope number.

Note Use the xPCScGetSignalList function instead of the
xPCScGetSignals function. The xPCScGetSignals will be removed
in a future release.

6-116

xPCScGetSignals

Purpose Copy list of signals to array

Prototype void xPCScGetSignals(int port, int scNum, int *data);

Arguments port Value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

data Integer array allocated by the caller as a list containing
the signal identifiers, terminated by -1.

Description The xPCScGetSignals function gets the list of signals defined for
scope scNum. You can use the constant MAX_SIGNALS, defined in
xpcapiconst.h, as the size of data. Use the xPCGetScope function
to get the scope number.

Note This function will be removed in a future release. Use the
xPCScGetSignalList function instead.

See Also API functions xPCScGetData, xPCGetScopes

Scope object property Signals

6-117

xPCScGetStartTime

Purpose Get start time for last data acquisition cycle

Prototype double xPCScGetStartTime(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetStartTime function returns the start time for the last
data acquisition cycle of a scope. If the function detects an error, it
returns -1.

Description The xPCScGetStartTime function gets the time at which the last data
acquisition cycle for scope scNum started. This is only valid for scopes
of type SCTYPE_HOST. Use the xPCGetScope function to get the scope
number.

See Also API functions xPCScGetNumSamples, xPCScGetDecimation

6-118

xPCScGetState

Purpose Get state of scope

Prototype int xPCScGetState(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetState function returns the state of scope scNum. If the
function detects an error, it returns -1.

Description The xPCScGetState function gets the state of scope scNum, or -1 upon
error. Use the xPCGetScope function to get the scope number.

Constants to find the scope state, defined in xpcapiconst.h, have the
following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.

SCST_PREACQUIRING 5 Scope acquires a predefined number
of samples before triggering.

SCST_WAITFORTRIG 1 After a scope is finished with the
preacquiring state, it waits for
a trigger. If the scope does not
preacquire data, it enters the wait
for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The scope
enters this state when it leaves the
wait for trigger state.

6-119

xPCScGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring data
when it has attained the predefined
limit.

SCST_INTERRUPTED 4 The user has stopped (interrupted)
the scope.

See Also API functions xPCScStart, xPCScStop

Scope object property Status

6-120

xPCScGetTriggerLevel

Purpose Get trigger level for scope

Prototype double xPCScGetTriggerLevel(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerLevel function returns the scope trigger level.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerLevel function gets the trigger level for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-121

xPCScGetTriggerMode

Purpose Get trigger mode for scope

Prototype int xPCScGetTriggerMode(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerMode function returns the scope trigger mode. If
the function detects an error, it returns -1.

Description The xPCScGetTriggerMode function gets the trigger mode for scope
scNum. Use the xPCGetScope function to get the scope number. Use
the constants defined in xpcapiconst.h to interpret the trigger mode.
These constants include the following:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope triggers when it is ready
to trigger, regardless of the
circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

6-122

xPCScGetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-123

xPCScGetTriggerScope

Purpose Get trigger scope

Prototype int xPCScGetTriggerScope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScope function returns a trigger scope. If the
function detects an error, it returns -1.

Description The xPCScGetTriggerScope function gets the trigger scope for scope
scNum. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-124

xPCScGetTriggerScopeSample

Purpose Get sample number for triggering scope

Prototype int xPCScGetTriggerScopeSample(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerScopeSample function returns a nonnegative
integer for a real sample, and -1 for the special case where triggering
is at the end of the data acquisition cycle for a triggering scope. If the
function detects an error, it returns INT_MIN (-2147483647-1).

Description The xPCScGetTriggerScopeSample function gets the number of
samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode,
xPCScSetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-125

xPCScGetTriggerSignal

Purpose Get trigger signal for scope

Prototype int xPCScGetTriggerSignal(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSignal function returns the scope trigger signal.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerSignal function gets the trigger signal for scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope.

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-126

xPCScGetTriggerSlope

Purpose Get trigger slope for scope

Prototype int xPCScGetTriggerSlope(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetTriggerSlope function returns the scope trigger slope.
If the function detects an error, it returns -1.

Description The xPCScGetTriggerSlope function gets the trigger slope of scope
scNum. Use the xPCGetScope function to get the scope number for the
trigger scope. Use the constants defined in xpcapiconst.h to interpret
the trigger slope. These constants have the following meanings:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal crosses
the trigger value.

6-127

xPCScGetTriggerSlope

See Also API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode, xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-128

xPCScGetType

Purpose Get type of scope

Prototype int xPCScGetType(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCScGetType function returns the scope type. If the function
detects an error, it returns -1.

Description The xPCScGetType function gets the type (SCTYPE_HOST for host,
SCTYPE_TARGET for target, or SCTYPE_FILE for file) of scope scNum. Use
the constants defined in xpcapiconst.h to interpret the return value.
A scope of type SCTYPE_HOST is displayed on the host computer while
a scope of type SCTYPE_TARGET is displayed on the target computer
screen. A scope of type SCTYPE_FILE is stored on a storage medium. Use
the xPCGetScope function to get the scope number.

See Also API functions xPCAddScope, xPCRemScope

Property Type of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-129

xPCScRemSignal

Purpose Remove signal from scope

Prototype void xPCScRemSignal(int port, int scNum, int sigNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

sigNum Enter a signal number.

Description The xPCScRemSignal function removes a signal from the scope with
number scNum. The scope must already exist, and signal number sigNum
must exist in the scope. Use xPCGetScopes to determine the existing
scopes, and use xPCScGetSignals to determine the existing signals
for a scope. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScAddSignal, xPCAddScope, xPCRemScope,
xPCGetScopes, xPCScGetSignals, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.remsignal,
SimulinkRealTime.hostScope.remsignal, and
SimulinkRealTime.targetScope.remsignal

6-130

xPCScSetAutoRestart

Purpose Scope autorestart status

Prototype void xPCScSetAutoRestart(int port, int scNum,
int autorestart)

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

autorestart Enter value to enable (1) or disable (0) scope
autorestart.

Description The xPCScSetAutoRestart function sets the autorestart flag for scope
scNum to 0 or 1. 0 disables the flag, 1 enables it. Use this function only
when the scope is stopped.

See Also API functions xPCScGetAutoRestart

6-131

xPCScSetDecimation

Purpose Set decimation of scope

Prototype void xPCScSetDecimation(int port, int scNum,
int decimation);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

decimation Enter an integer for the decimation.

Description The xPCScSetDecimation function sets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in
a scope window. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also API functions xPCScGetDecimation, xPCScGetState

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-132

xPCScSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype void xPCScSetNumPrePostSamples(int port, int
scNum, int prepost);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is stopped.

Description The xPCScSetNumPrePostSamples function sets the number of samples
for pre- or posttriggering for scope scNum to prepost. Use this function
only when the scope is stopped. Use xPCScGetState to check the state
of the scope. Use the xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumPrePostSamples, xPCScGetState

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-133

xPCScSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype void xPCScSetNumSamples(int port, int scNum, int samples);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

samples Enter the number of samples you want to acquire in
one cycle.

Description The xPCScSetNumSamples function sets the number of samples for
scope scNum to samples. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScope function to get the scope number.

See Also API functions xPCScGetNumSamples, xPCScGetState

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-134

xPCScSetTriggerLevel

Purpose Set trigger level for scope

Prototype void xPCScSetTriggerLevel(int port, int scNum,
double level);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

level Value for a signal to trigger data acquisition with a
scope.

Description The xPCScSetTriggerLevel function sets the trigger level to level for
scope scNum. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also API functions xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-135

xPCScSetTriggerMode

Purpose Set trigger mode of scope

Prototype void xPCScSetTriggerMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Trigger mode for a scope.

Description The xPCScSetTriggerMode function sets the trigger mode of scope
scNum to mode. Use this function only when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

Use the constants defined in xpcapiconst.h to interpret the trigger
mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances. This is
the default.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal
has crossed a value.

TRIGMD_SCOPE 3 The scope is triggered by another
scope at the trigger point of the
triggering scope, modified by the value of
triggerscopesample (see scopedata).

6-136

xPCScSetTriggerMode

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScGetTriggerMode, xPCScGetState

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-137

xPCScSetTriggerScope

Purpose Select scope to trigger another scope

Prototype void xPCScSetTriggerScope(int port, int scNum,
int trigScope);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScope Enter the scope number of the scope used for a trigger.

Description The xPCScSetTriggerScope function sets the trigger scope of scope
scNum to trigScope. This function can only be used when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

The scope type can be SCTYPE_HOST, SCTYPE_TARGET, or SCTYPE_FILE.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-138

xPCScSetTriggerScopeSample

Purpose Set sample number for triggering scope

Prototype void xPCScSetTriggerScopeSample(int port, int scNum, int
trigScSamp);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

trigScSampEnter a nonnegative integer for the number of samples
acquired by the triggering scope before starting data
acquisition on a second scope.

Description The xPCScSetTriggerScopeSample function sets the number of samples
(trigScSamp) a triggering scope acquires before it triggers a second
scope (scNum). Use the xPCGetScopes function to get a list of scopes.

For meaningful results, set trigScSamp between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. If you specify too large a value, the scope is never
triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, enter a value of -1 for trigScSamp.

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope,
xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-139

xPCScSetTriggerSignal

Purpose Select signal to trigger scope

Prototype void xPCScSetTriggerSignal(int port, int
scNum, int trigSig);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSig Enter a signal number.

Description The xPCScSetTriggerSignal function sets the trigger signal of scope
scNum to trigSig. The trigger signal trigSig must be one of the
signals in the scope. Use this function only when the scope is stopped.
You can use xPCScGetSignals to get the list of signals in the scope. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-140

xPCScSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype void xPCScSetTriggerSlope(int port, int scNum,
int trigSlope);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

trigSlope Enter the slope mode for the signal that triggers the
scope.

Description The xPCScSetTriggerSlope function sets the trigger slope of scope
scNum to trigSlope. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must be
rising when it crosses the trigger
value.

TRIGSLOPE_FALLING 2 The trigger signal value must be
falling when it crosses the trigger
value.

6-141

xPCScSetTriggerSlope

See Also API functions xPCGetScopes, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScGetTriggerSlope,
xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetState

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-142

xPCScSoftwareTrigger

Purpose Set software trigger of scope

Prototype void xPCScSoftwareTrigger(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScSoftwareTrigger function triggers scope scNum. The
scope must be in the state Waiting for trigger for this function to
succeed. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

Regardless of the trigger mode setting, you can use
xPCScSoftwareTrigger to force a trigger. In trigger mode
Software, this function is the only way to trigger the scope.

See Also API functions xPCGetScopes, xPCScGetState, xPCIsScFinished

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-143

xPCScStart

Purpose Start data acquisition for scope

Prototype void xPCScStart(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStart function starts or restarts the data acquisition of scope
scNum. If the scope does not have to preacquire samples, it enters the
Waiting for Trigger state. The scope must be in state Waiting to
Start, Finished, or Interrupted for this function to succeed. Call
xPCScGetState to check the state of the scope or, for host scopes that
are already started, call xPCIsScFinished. Use the xPCGetScopes
function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScGetState, xPCScStop,
xPCIsScFinished

Scope object method SimulinkRealTime.fileScope.start,
SimulinkRealTime.hostScope.start,
SimulinkRealTime.targetScope.start

6-144

xPCScStop

Purpose Stop data acquisition for scope

Prototype void xPCScStop(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCScStop function stops the scope scNum. This sets the scope to
the "Interrupted" state. The scope must be running for this function
to succeed. Use xPCScGetState to determine the state of the scope. Use
the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCScStart, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.stop,
SimulinkRealTime.hostScope.stop,
SimulinkRealTime.targetScope.stop

6-145

xPCSetEcho

Purpose Turn message display on or off

Prototype void xPCSetEcho(int port, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

mode Valid values are

0 Turns the display off

1 Turns the display on

Description On the target computer screen, the xPCSetEcho function sets the
message display on the target computer on or off. You can change the
mode only when the target application is stopped. When you turn the
message display off, the message screen no longer updates. Existing
messages remain on the screen as they were.

See Also API function xPCGetEcho

6-146

xPCSetLastError

Purpose Set last error to specific string constant

Prototype void xPCSetLastError(int error);

Arguments error Specify the string constant for the error.

Description The xPCSetLastError function sets the global error constant returned
by xPCGetLastError to error. This is useful only to set the string
constant to ENOERR, indicating no error was found.

See Also API functions xPCGetLastError, xPCErrorMsg

6-147

xPCSetLoadTimeOut

Purpose Change initialization timeout value between host computer and target
computer

Prototype void xPCSetLoadTimeOut(int port, int timeOut);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

timeOut Enter the new communication timeout value.

Description The xPCSetLoadTimeOut function changes the timeout value for
communication between the host computer and target computer. The
timeOut value is the time an Simulink Real-Time API function waits
for the communication between the host computer and target computer
to complete before returning. It enables you to set the number of
communication attempts to be made before signaling a timeout.

For example, the function xPCLoadApp waits to check whether the
model initialization for a new application is complete before returning.
When a new target application is loaded onto the target computer,
the function xPCLoadApp waits for a certain time to check whether
the model initialization is complete before returning. If the model
initialization is incomplete within the allotted time, xPCLoadApp returns
a timeout error.

By default, xPCLoadApp checks for target readiness for up to 5 seconds.
However, for larger models or models requiring longer initialization (for
example, models with thermocouple boards), the default might not be
long enough and a spurious timeout can be generated. Other functions
that communicate with the target computer will wait for timeOut
seconds before declaring a timeout event.

See Also API functions xPCGetLoadTimeOut, xPCLoadApp, xPCUnloadApp

6-148

xPCSetLogMode

Purpose Set logging mode and increment value of scope

Prototype void xPCSetLogMode(int port, lgmode logging_data);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

logging_data Logging mode and increment value.

Description The xPCSetLogMode function sets the logging mode and increment to the
values set in logging_data. See the structure lgmode for more details.

See Also API function xPCGetLogMode

API structure lgmode

Property LogMode of SimulinkRealTime.target

6-149

xPCSetParam

Purpose Change value of parameter

Prototype void xPCSetParam(int port, int paramIdx, const
double *paramValue);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

paramIdx Parameter index.

paramValue Vector of doubles, assumed to be the size required
by the parameter type

Description The xPCSetParam function sets the parameter paramIdx to the
value in paramValue. For matrices, paramValue should be a vector
representation of the matrix in column-major format. Although
paramValue is a vector of doubles, the function converts the values to
the expected data types (using truncation) before setting them.

See Also API functions xPCGetParamDims, xPCGetParamIdx, xPCGetParam

6-150

xPCSetSampleTime

Purpose Change target application sample time

Prototype void xPCSetSampleTime(int port, double ts);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

ts Sample time for the target application.

Description The xPCSetSampleTime function sets the sample time, in seconds, of the
target application to ts. Use this function only when the application
is stopped.

See Also API function xPCGetSampleTime

Property SampleTime of SimulinkRealTime.target

6-151

xPCSetScope

Purpose Set properties of scope

Prototype void xPCSetScope(int port, scopedata state);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

state Enter a structure of type scopedata.

Description
Note The xPCSetScope function will be removed in a future release.
Use the xPCScSetScopePropertyName functions to access property
values instead. For example, to set the number of samples to acquire in
one data acquisition cycle, use xPCScSetNumSamples.

The xPCSetScope function sets the properties of a scope using a state
structure of type scopedata. Set the properties you want to set for the
scope. You can set several properties at the same time. For convenience,
call the function xPCGetScope first to populate the structure with
the current values. You can then change the desired values. Use
this function only when the scope is stopped. Use xPCScGetState to
determine the state of the scope.

See Also API functions xPCGetScope, xPCScGetState, scopedata

Scope object methods SimulinkRealTime.fileScope.set,
SimulinkRealTime.hostScope.set, and
SimulinkRealTime.targetScope.set

6-152

xPCSetStopTime

Purpose Change target application stop time

Prototype void xPCSetStopTime(int port, double tfinal);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

tfinal Enter the stop time, in seconds.

Description The xPCSetStopTime function sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

See Also API function xPCGetStopTime

Property StopTime of SimulinkRealTime.target

6-153

xPCStartApp

Purpose Start target application

Prototype void xPCStartApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStartApp function starts the target application loaded on the
target computer.

See Also API function xPCStopApp

Target object method SimulinkRealTime.target.start

6-154

xPCStopApp

Purpose Stop target application

Prototype void xPCStopApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCStopApp function stops the target application loaded on the
target computer. The target application remains loaded and the
parameter changes you made remain intact. If you want to stop and
unload an application, use xPCUnloadApp.

See Also API functions xPCStartApp, xPCUnloadApp

Target object method SimulinkRealTime.target.stop

6-155

xPCTargetPing

Purpose Ping target computer

Prototype int xPCTargetPing(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Return The xPCTargetPing function does not return an error status. This
function returns 1 if the target responds. If the target computer does
not respond, the function returns 0.

Description The xPCTargetPing function pings the target computer and returns 1
or 0 depending on whether the target responds or not. This function
returns an error string constant only when there is an error in the input
parameter (for example, the port number is invalid or port is not open).
Other errors, such as the inability to connect to the target, are ignored.

If you are using TCP/IP, note that xPCTargetPing will cause the
target computer to close the TCP/IP connection. You can use
xPCOpenConnection to reconnect. You can also use this xPCTargetPing
feature to close the target computer connection in the event of an
aborted TCP/IP connection (for example, if your host side program
crashes).

See Also API functions xPCOpenConnection, xPCOpenSerialPort,
xPCOpenTcpIpPort, xPCClosePort

6-156

xPCTgScGetGrid

Purpose Get status of grid line for particular scope

Prototype int xPCTgScGetGrid(int port, int scNum);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return Returns the status of the grid for a scope of type SCTYPE_TARGET. If the
function detects an error, it returns -1.

Description The xPCTgScGetGrid function gets the state of the grid lines for scope
scNum (which must be of type SCTYPE_TARGET). A return value of 1
implies grid on, while 0 implies grid off. Note that when the scope mode
is set to SCMODE_NUMERICAL, the grid is not drawn even when the grid
mode is set to 1.

Tip

• Use xPCTgScSetMode and xPCTgScGetMode to set and retrieve the
scope mode.

• Use xPCGetScopes to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

6-157

xPCTgScGetMode

Purpose Get scope mode for displaying signals

Prototype int xPCTgScGetMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Return The xPCTgScGetMode function returns the value corresponding to the
scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If this function detects an error, it returns -1.

Description The xPCTgScGetMode function gets the mode (SCMODE_NUMERICAL,
SCMODE_REDRAW, SCMODE_SLIDING, SCMODE_ROLLING) of the scope scNum,
which must be of type SCTYPE_TARGET. Use the xPCGetScopes function
to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property DisplayMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6-158

xPCTgScGetViewMode

Purpose Get view mode for target computer display

Prototype int xPCTgScGetViewMode(int port);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return The xPCTgScGetViewMode function returns the view mode for the target
computer screen. If the function detects an error, it returns -1.

Description The xPCTgScGetViewMode function gets the view (zoom) mode for the
target computer display. If the returned value is not zero, the number
is that of the scope currently displayed on the screen. If the value is 0,
then all defined scopes are displayed on the target computer screen, but
no scopes are in focus (all scopes are unzoomed).

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

6-159

xPCTgScGetYLimits

Purpose Copy y-axis limits for scope to array

Prototype void xPCTgScGetYLimits(int port, int scNum,
double *limits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

limits The first element of the array is the lower limit while the
second element is the upper limit.

Description The xPCTgScGetYLimits function gets and copies the upper and lower
limits for a scope of type SCTYPE_TARGET and with scope number scNum.
The limits are stored in the array limits. If both elements are zero,
the limits are autoscaled. Use the xPCGetScopes function to get a list of
scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScSetYLimits

Property Ylimit of SimulinkRealTime.targetScope

6-160

xPCTgScSetGrid

Purpose Set grid mode for scope

Prototype void xPCTgScSetGrid(int port, int scNum, int grid);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

grid Enter a grid value.

Description The xPCTgScSetGrid function sets the grid of a scope of type
SCTYPE_TARGET and scope number scNum to grid. If grid is 0, the
grid is off. If grid is 1, the grid is on and grid lines are drawn on
the scope window. When the drawing mode of scope scNum is set to
SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is
set to 1. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScGetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Scope object property Grid

6-161

xPCTgScSetMode

Purpose Set display mode for scope

Prototype void xPCTgScSetMode(int port, int scNum, int mode);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

mode Enter the value for the mode.

Description The xPCTgScSetMode function sets the mode of a scope of type
SCTYPE_TARGET and scope number scNum to mode. You can use one of
the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property DisplayMode of SimulinkRealTime.targetScope

6-162

xPCTgScSetViewMode

Purpose Set view mode for scope

Prototype void xPCTgScSetViewMode(int port, int scNum);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

scNum Enter the scope number.

Description The xPCTgScSetViewMode function sets the target computer screen
to display one scope with scope number scNum. If you set scNum to 0,
the target computer screen displays all the defined scopes. Use the
xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

6-163

xPCTgScSetYLimits

Purpose Set y-axis limits for scope

Prototype void xPCTgScSetYLimits(int port, int scNum, const
double *Ylimits);

Arguments port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Ylimits Enter a two-element array.

Description The xPCTgScSetYLimits function sets the y-axis limits for a scope
with scope number scNum and type SCTYPE_TARGET to the values in
the double array Ylimits. The first element is the lower limit, and
the second element is the upper limit. Set both limits to 0.0 to specify
autoscaling. Use the xPCGetScopes function to get a list of scopes.

See Also API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScGetMode, xPCTgScGetYLimits

Property Ylimit of SimulinkRealTime.targetScope

6-164

xPCUnloadApp

Purpose Unload target application

Prototype void xPCUnloadApp(int port);

Arguments port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

Description The xPCUnloadApp function stops the current target application,
removes it from the target computer memory, and resets the target
computer in preparation for receiving a new target application. The
function xPCLoadApp calls this function before loading a new target
application.

See Also API function xPCLoadApp

Target object methods SimulinkRealTime.target.load,
SimulinkRealTime.target.unload

6-165

xPCUnloadApp

6-166

7

Simulink Real-Time API
Reference for COM

7 Simulink® Real-Time™ API Reference for COM

COM API Methods — Alphabetical List

7-2

FSDir

Purpose Type definition for file system folder information structure

Syntax typedef struct {
BSTR Name;
BSTR Date;
BSTR Time;
long Bytes;
long isdir;
} FSDir;

Fields Name This value contains the name of the file or
folder.

Date This value contains the date the file or folder
was last modified.

Time This value contains the time the file or folder
was last modified.

Bytes This value contains the size of the file in
bytes. If the element is a folder, this value
is 0.

isdir This value indicates if the element is a file
(0) or folder (1). If it is a folder, Bytes has a
value of 0.

Description The FSDir structure contains information for a folder in the file system.

See Also API methodxPCFileSystem.DirList

7-3

FSDiskInfo

Purpose Type definition for file system disk information structure

Syntax typedef struct {
BSTR Label;
BSTR DriveLetter;
BSTR Reserved;
long SerialNumber;
long FirstPhysicalSector;
long FATType;
long FATCount;
long MaxDirEntries;
long BytesPerSector;
long SectorsPerCluster;
long TotalClusters;
long BadClusters;
long FreeClusters;
long Files;
long FileChains;
long FreeChains;
long LargestFreeChain;

} FSDiskInfo;

Fields Label This value contains the zero-terminated
string that contains the volume label. The
string is empty if the volume has no label.

DriveLetter This value contains the drive letter, in
uppercase.

Reserved Reserved.

SerialNumber This value contains the volume serial
number.

FirstPhysicalSector This value contains the logical block address
(LBA) of the logical drive boot record. For
3.5-inch disks, this value is 0.

7-4

FSDiskInfo

FATType This value contains the type of file system
found. It can contain 12 , 16 , or 32 for
FAT-12, FAT-16, or FAT-32 volumes,
respectively.

FATCount This value contains the number of FAT
partitions on the volume.

MaxDirEntries This value contains the size of the root folder.
For FAT-32 systems, this value is 0.

BytesPerSector This value contains the sector size. This
value is most likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the
smallest unit of storage that can be allocated
to a file.

TotalClusters This value contains the number of file storage
clusters on the volume.

BadClusters This value contains the number of clusters
that have been marked as bad. These clusters
are unavailable for file storage.

FreeClusters This value contains the number of clusters
that are currently available for storage.

Files This value contains the number of files,
including folders, on the volume. This
number excludes the root folder and files that
have an allocated file size of 0.

FileChains This value contains the number of contiguous
cluster chains. On a completely unfragmented
volume, this value is identical to the value
of Files.

7-5

FSDiskInfo

FreeChains This value contains the number of contiguous
cluster chains of free clusters. On a
completely unfragmented volume, this value
is 1.

LargestFreeChain This value contains the maximum allocated
file size, in number of clusters, for a newly
allocated contiguous file. On a completely
unfragmented volume, this value is identical
to FreeClusters.

Description The FSDiskInfo structure contains information for file system disks.

See Also API method xPCFileSystem.GetDiskInfo

7-6

xPCFileSystem.CD

Purpose Change current folder on target computer to specified path

Prototype long CD(BSTR dir);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dir Enter the path on the target computer to change to.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CD method changes the current folder on the target
computer to the path specified in dir. Use the xPCFileSystem.PWD
method to show the current folder of the target computer.

See Also API method xPCFileSystem.PWD

7-7

xPCFileSystem.CloseFile

Purpose Close file on target computer

Prototype CloseFile(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.CloseFile method closes the file associated with
fileHandle on the target computer. fileHandle is the handle of a file
previously opened by the xPCFileSystem.OpenFile method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

7-8

xPCFileSystem.DirList

Purpose Return contents of target computer folder

Prototype DirList(BSTR path);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] path Enter the path of the folder.

Description The xPCFileSystem.DirList method returns the contents of the target
computer folder specified by path as an array of the FSDir structure.

See Also API structure FSDir

API method xPCFileSystem.GetDiskInfo

7-9

xPCFileSystem.GetDiskInfo

Purpose Return disk information

Prototype GetDiskInfo(BSTR driveLetter);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] driveLetter Enter the driver letter that contains the file
system.

Description The xPCFileSystem.GetDiskInfo method accepts as input the drive
specified by driveLetter and fills in the fields of the FSDiskInfo
structure.

See Also API structure FSDiskInfo

API method xPCFileSystem.DirList

7-10

xPCFileSystem.GetFileSize

Purpose Return size of file on target computer

Prototype long GetFileSize(long filehandle);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filehandle Enter the file handle of an open file on the
target computer.

Return This method returns the size of the specified file in bytes.

Description The xPCFileSystem.GetFileSize method returns the size, in bytes,
of the file associated with filehandle on the target computer.
filehandle is the handle of a file previously opened by the
xPCFileSystem.OpenFile method.

See Also API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile

7-11

xPCFileSystem.Init

Purpose Initialize file system object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] xPCProtocol Specify the communication port of the target
computer object for which the file system is
to be initialized.

Return If the method detects an error, it returns -1. Otherwise, the
xPCFileSystem.Init method returns 0.

Description The xPCFileSystem.Init method initializes the file system object to
communicate with the target computer referenced by the xPCProtocol
object.

7-12

xPCFileSystem.MKDIR

Purpose Create folder on target computer

Prototype long MKDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of the folder to create on the
target computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.MKDIR method creates the folder dirname in the
current folder of the target computer.

See Also API method xPCFileSystem.PWD

7-13

xPCFileSystem.OpenFile

Purpose Open file on target computer

Prototype long OpenFile(BSTR filename, BSTR permission);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of the file to open on the
target computer.

[in] permission Enter the read/write permission with which
to open the file. Values are r (read) or w
(read/write).

Return The xPCFileSystem.OpenFile method returns the file handle for the
opened file.

Description The xPCFileSystem.OpenFile method opens the specified file,
filename, on the target computer. If the file does not exist, the
xPCFileSystem.OpenFile method creates filename, then opens it. You
can open a file for read or read/write access.

Note Opening the file for write access overwrites the existing contents
of the file. It does not append the new data.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

7-14

xPCFileSystem.PWD

Purpose Get current folder of target computer

Prototype BSTR PWD();

Member
Of

XPCAPICOMLib.xPCFileSystem

Return This method returns the path of the current folder on the target
computer.

Description The xPCFileSystem.PWD method places the path of the current folder
on the target computer.

See Also API method xPCFileSystem.CD

7-15

xPCFileSystem.ReadFile

Purpose Read open file on target computer

Prototype VARIANT ReadFile(int fileHandle, int start, int numbytes);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target computer.

[in] start Enter an offset from the beginning of the file
from which this method can start to read.

[in] numbytes Enter the number of bytes this method is to
read from the file.

Return This method returns the results of the read operation as a VARIANT of
type Byte. If the method detects an error, it returns VT_ERROR, whose
value is 10, instead.

Description The xPCFileSystem.ReadFile method reads an open file on the target
computer and returns the results of the read operation as a VARIANT
of type Byte. fileHandle is the file handle of a file previously opened
by xPCFileSystem.OpenFile. You can specify that the read operation
begin at the beginning of the file (default) or at a certain offset into the
file (start). The numbytes parameter specifies how many bytes the
xPCFileSystem.ReadFile method is to read from the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.WriteFile

7-16

xPCFileSystem.RemoveFile

Purpose Remove file from target computer

Prototype long RemoveFile(BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] filename Enter the name of a file on the target
computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RemoveFile method removes the file named
filename from the target computer file system. filename can be a
relative or absolute path name on the target computer.

7-17

xPCFileSystem.RMDIR

Purpose Remove folder from target computer

Prototype long RMDIR(BSTR dirname);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] dirname Enter the name of a folder on the target
computer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.RMDIR method removes a folder named dirname
from the target computer file system. dirname can be a relative or
absolute path name on the target computer.

7-18

xPCFileSystem.ScGetFileName

Purpose Get name of file for scope

Prototype BSTR ScGetFileName(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return Returns the name of the file for the scope.

Description The xPCFileSystem.ScGetFileName method returns the name of the
file to which scope scNum will save signal data.

See Also API method xPCFileSystem.ScSetFileName

7-19

xPCFileSystem.ScGetWriteMode

Purpose Get write mode of file for scope

Prototype long ScGetWriteMode(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but
the file system maintains the actual file size.

Description The xPCFileSystem.ScGetWriteMode method returns the write mode
of the file for the scope.

See Also API method xPCFileSystem.ScSetWriteMode

7-20

xPCFileSystem.ScGetWriteSize

Purpose Get block write size of data chunks

Prototype long ScGetWriteSize(long scNum);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

Return This method returns the block size, in bytes, of the data chunks.

Description The xPCFileSystem.ScGetWriteSize method gets the block size, in
bytes, of the data chunks.

See Also API method xPCFileSystem.ScSetWriteSize

7-21

xPCFileSystem.ScSetFileName

Purpose Specify file name to contain signal data

Prototype long ScSetFileName(long scNum, BSTR filename);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] filename Enter the name of a file to contain the signal
data.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetFileName method sets the name of the file
to which the scope will save the signal data. The Simulink Real-Time
software creates this file in the target computer file system. Note that
you can only call this method when the scope is stopped.

See Also API method xPCFileSystem.ScGetFileName

7-22

xPCFileSystem.ScSetWriteMode

Purpose Specify when file allocation table entry is updated

Prototype long ScSetWriteMode(long scNum, long writeMode);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeMode Enter an integer for the write mode:

0 Enables lazy write mode

1 Enables commit write mode

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteMode method specifies when a file
allocation table (FAT) entry is updated. Both modes write the signal
data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is
closed and not during each file write operation. This mode
is faster, but if the system crashes before the file is closed,
the file system might not have the actual file size (the file
contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously
updates the FAT entry for the file. This mode is slower,
but the file system maintains the actual file size.

See Also API method xPCFileSystem.ScSetWriteMode

Scope object property Mode

7-23

xPCFileSystem.ScSetWriteSize

Purpose Specify that memory buffer collect data in multiples of write size

Prototype long ScSetWriteSize(long scNum, long writeSize);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] scNum Enter the scope number.

[in] writeSize Enter the block size, in bytes, of the data
chunks.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.ScSetWriteSize method specifies that a memory
buffer collect data in multiples of writeSize. By default, this parameter
is 512 bytes, which is the typical disk sector size. Using a block size
that is the same as the disk sector size provides better performance.
writeSize must be a multiple of 512.

See Also API method xPCFileSystem.ScGetWriteSize

Scope object property WriteSize

7-24

xPCFileSystem.WriteFile

Purpose Write to file on target computer

Prototype long WriteFile(long fileHandle, long numbytes,
VARIANT buffer);

Member
Of

XPCAPICOMLib.xPCFileSystem

Arguments [in] fileHandle Enter the file handle of an open file on the
target computer.

[in] numbytes Enter the number of bytes this method is
to write into the file.

[in] buffer The contents to write to fileHandle are
stored in buffer.

Return If the method detects an error, it returns -1. Otherwise, the method
returns 0.

Description The xPCFileSystem.WriteFile method writes the contents of the
VARIANT buffer, of type Byte, to the file specified by fileHandle on
the target computer. The fileHandle parameter is the handle of a
file previously opened by xPCFSOpenFile. numbytes is the number of
bytes to write to the file.

See Also API methods xPCFileSystem.CloseFile,
xPCFileSystem.GetFileSize, xPCFileSystem.OpenFile,
xPCFileSystem.ReadFile

7-25

xPCProtocol.Close

Purpose Close RS-232 or TCP/IP communication connection

Prototype long Close();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.Close method closes the communication channel
opened by xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect.

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

7-26

xPCProtocol.GetLoadTimeOut

Purpose Return current timeout value for target application initialization

Prototype long GetLoadTimeOut();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns -1. Otherwise, it returns the
number of seconds allowed for the initialization of the target application.

Description The xPCProtocol.GetLoadTimeOut method returns the number of
seconds allowed for the initialization of the target application.

When you load a new target application onto the target computer, the
method xPCTarget.LoadApp waits for a certain amount of time before
checking to see whether the initialization of the target application is
complete. In the case where initialization of the target application is
not complete, the method xPCTarget.LoadApp returns a timeout error.
By default, xPCTarget.LoadApp checks five times to see whether the
target application is ready, with each attempt taking about 1 second.
However, for larger models or models requiring longer initialization
(for example, those with thermocouple boards), the default might not
be long enough and a spurious timeout is generated. The method
xPCProtocol.SetLoadTimeOutxPCProtocol.SetLoadTimeOut sets the
timeout to a different number.

Use the xPCProtocol.GetLoadTimeOut method if you suspect that the
current number of seconds (the timeout value) is too short. Then use
the xxPCProtocol.SetLoadTimeOut method to set the timeout to a
higher number.

7-27

xPCProtocol.GetxPCErrorMsg

Purpose Return error string

Prototype BSTR GetxPCErrorMsg();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the xPCProtocol.GetxPCErrorMsg method completes without
detecting an error, it returns the string for the last reported error.

Description The xPCProtocol.GetxPCErrorMsg method returns the string of the
last error reported by another COM API method. This value is reset
every time you call a new method. Therefore, you should check this
constant value immediately after a call to an API COM method. You
can use this method in conjunction with the xPCProtocol.isxPCError
method, which detects that an error has occurred.

See Also API function xPCProtocol.isxPCError

7-28

xPCProtocol.Init

Purpose Initialize Simulink Real-Time API DLL

Prototype long Init();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the Simulink Real-Time DLL, xpcapi.dll loads without causing
xPCProtocol.Init to detect an error, the method returns 0. If
xpcapi.dll fails to load, this method returns -1.

Description The xPCProtocol.Init method initializes the Simulink Real-Time API
by loading the Simulink Real-Time DLL, xpcapi.dll, into memory.
To load xpcapi.dll into memory, the method requires that the
xpcapi.dll file be in one of the following folders:

• The folder in which the application is loaded

• The current folder

• The Windows system folder

7-29

xPCProtocol.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCProtocol.isxPCError method to check for errors that
might occur after a call to the xPCProtocol class methods. If the method
detects that an error occurred, call the xPCProtocol.GetxPCErrorMsg
to get the string for the error.

See Also API function xPCProtocol.GetxPCErrorMsg

7-30

xPCProtocol.Port

Purpose Contain communication channel index

Prototype long Port();

Member
Of

XPCAPICOMLIB.xPCProtocol

Return If the method detects an error, it returns a nonpositive number.
Otherwise, it returns a positive number (the communication channel
index).

Description The xPCProtocol.Port property contains the communication channel
index if connection with the target computer succeeds. Note that you
only need to use this property when working with a model-specific COM
library that you generate from a Simulink model.

7-31

xPCProtocol.Reboot

Purpose Reboot target computer

Prototype long Reboot();

Member
Of

XPCAPICOMLib.xPCProtocol

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.Reboot method reboots the target computer.
This function does not close the connection to the target computer.
You should explicitly close the connection, then reestablish the
connection once the target computer has rebooted. Use the methods
xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect to
reestablish the connection.

7-32

xPCProtocol.RS232Connect

Purpose Open RS-232 connection to target computer

Prototype long RS232Connect(long comport, long baudrate);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] comport Index of the COM port to be used (0 is COM1, 1 is
COM2, and so forth).

[in] baudrate baudratemust be one of the following values: 1200,
2400, 4800, 9600, 19200, 38400, 57600, or 115200.

Return The xPCProtocol.RS232Connect method returns the port value for the
connection. If the method detects an error, it returns 0. Otherwise, it
returns -1.

Description The xPCProtocol.RS232Connectmethod initiates an RS-232 connection
to an Simulink Real-Time system. It returns the port value for the
connection. Be sure to pass this value to every Simulink Real-Time API
function that requires a port value.

If you enter a value of 0 for baudrate, this function sets the baud rate to
the default value (115200).

Note RS-232 Host-Target communication mode will be removed in a
future release. Use TCP/IP instead.

7-33

xPCProtocol.SetLoadTimeOut

Purpose Change initialization timeout value

Prototype long SetLoadTimeOut(long timeOut);

Member
Of

XPCAPICOMLib.xPCProtocol

Arguments [in] timeOut Enter the new initialization timeout value.

Return If the method detects an error, it returns 0. Otherwise, it
returns -1. To get the string description for the error, use
xPCProtocol.GetxPCErrorMsg.

Description The xPCProtocol.SetLoadTimeOut method changes the timeout
value for initialization. The timeOut value is the time the method
xPCTarget.LoadApp waits to check whether the model initialization
for a new application is complete before returning. It enables you to
set the number of initialization attempts to be made before signaling
a timeout. When a new target application is loaded onto the target
computer, the method xPCTarget.LoadApp waits for a certain time to
check whether the model initialization is complete before returning.
If the model initialization is incomplete within the allotted time,
xPCTarget.LoadApp returns a timeout error.

By default, xPCTarget.LoadApp checks for target readiness five times,
with each attempt taking approximately 1 second (less if the target
is ready). However, for larger models or models requiring longer
initialization (for example, those with thermocouple boards), the default
might not be long enough and a spurious timeout can be generated.

7-34

xPCProtocol.TargetPing

Purpose Ping target computer

Prototype long TargetPing;

Member
Of

XPCAPICOMLIB.xPCProtocol

Return The xPCProtocol.TargetPing method does not return an error
status. This method returns 1 if it reaches the target computer and
the computer responds. If the target computer does not respond, the
method returns 0.

Description The xPCProtocol.TargetPing method pings the target computer and
returns 1 or 0 depending on whether the target responds or not. Errors
such as the inability to connect to the target are ignored.

If you are using TCP/IP, note that xPCProtocol.TargetPing will
cause the target computer to close the TCP/IP connection. You can
use xPCProtocol.TcpIpConnect to reconnect. You can also use
this xPCProtocol.TargetPing feature to close the target computer
connection in the event of an aborted TCP/IP connection (for example, if
your host side program crashes).

7-35

xPCProtocol.TcpIpConnect

Purpose Open TCP/IP connection to target computer

Prototype long TcpIpConnect(BSTR TargetIpAddress, BSTR TargetPort);

Member
Of

XPCAPICOMLIB.xPCProtocol

Arguments [in] TargetIpAddress Enter the IP address of the target
as a dotted decimal string. For
example, "192.168.0.10".

[in] TargetPort Enter the associated IP port as a
string. For example, "22222".

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCProtocol.TcpIpConnect method opens a connection to the
TCP/IP location specified by the IP address. Use this integer as the
TargetPort variable in the Simulink Real-Time COM API functions
that require a port value.

7-36

xPCProtocol.Term

Purpose Unload Simulink Real-Time API DLL from memory

Prototype long Term();

Member
Of

XPCAPICOMLib.xPCProtocol

Return The xPCProtocol.Term method always returns -1.

Description The xPCProtocol.Term method unloads the Simulink Real-Time API
DLL (xpcapi.dll) from memory. You must call this method when you
want to terminate your COM API application.

7-37

xPCScopes.AddFileScope

Purpose Create new file scope

Prototype long AddFileScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.AddFileScope method creates a new file scope on the
target computer.

Calling the xPCScopes.AddFileScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

7-38

xPCScopes.AddHostScope

Purpose Create new host scope

Prototype long AddHostScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1, 2,
3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.AddHostScope method creates a new host scope on
the target computer.

Calling the xPCScopes.AddHostScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

7-39

xPCScopes.AddTargetScope

Purpose Create new target scope

Prototype long AddTargetScope(long scNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter a number for a new scope. Values are 1,
2, 3. . .

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description If the method detects an error, it returns 0. The
xPCScopes.AddTargetScope method creates a new scope on
the target computer.

Calling the xPCScopes.AddTargetScope method with scNum
having the number of an existing scope produces an error. Use
xPCScopes.GetScopes to find the numbers of existing scopes.

7-40

xPCScopes.GetScopes

Purpose Get and copy list of scope numbers

Prototype VARIANT GetScopes(long size);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] size Specify the size of the VARIANT array returned. This
argument must be greater than MAX_SCOPES-1. The
elements in the array consist of a list of unsorted
integers, terminated by -1.

Return The xPCScopes.GetScopes method returns a VARIANT array with
elements containing a list of scope numbers from the target application.

Description The xPCScopes.GetScopes method gets a VARIANT array with elements
containing a list of scope numbers currently defined for the target
application. Specify the size of the VARIANT array returned. This size
must be greater than the maximum number of scopes -1, up to a
maximum of 30 scopes. The elements in the array consist of a list of
unsorted integers, terminated by -1.

7-41

xPCScopes.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCScopes

Return The xPCScopes.GetxPCError method returns the string for the last
reported error. If the software has not reported an error, this method
returns 0.

Description The xPCScopes.GetxPCError method gets the string of the last
reported error by another COM API method. This value is reset every
time you call a new method. Therefore, you should check this constant
value immediately after a call to an API COM method. You can use this
method in conjunction with the xPCScopes.isxPCError method, which
detects that an error has occurred.

See Also API function xPCScopes.isxPCError

7-42

xPCScopes.Init

Purpose Initialize scope object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] xPCProtocol Specify the communication port of the target
computer object for which the scope is to be
initialized.

Return If the xPCScopes.Init method initializes the scope object without
detecting an error, it returns 0. If the scope object fails to initialize, the
method returns -1.

Description The xPCScopes.Initmethod initializes the scope object to communicate
with the target computer referenced by the xPCProtocol object.

7-43

xPCScopes.IsScopeFinished

Purpose Get data acquisition status for scope

Prototype long IsScopeFinished(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns -1. If a scope finishes a data
acquisition cycle, this method returns 1. If the scope is in the process of
acquiring data, this method returns 0.

Description The xPCScopeos.IsScopeFinished method gets a 1 or 0 depending on
whether scope scNum is finished (state of SCST_FINISHED) or not. You
can also call this function for target scopes; however, because target
scopes restart immediately, it is almost impossible to find these scopes
in the finished state.

7-44

xPCScopes.isxPCError

Purpose Get error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCScopes

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCScopes.isxPCError method to check for errors that might
occur after a call to the xPCScopes class methods. If the software
detects that an error occurred, call the xPCScopes.GetxPCErrormethod
to get the string for the error.

See Also API function xPCScopes.GetxPCError

7-45

xPCScopes.RemScope

Purpose Remove scope

Prototype long RemScope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.RemScope method removes the scope with number
scNum. Attempting to remove a nonexistent scope causes an error. For a
list of existing scopes, use xPCScopes.GetScopes.

7-46

xPCScopes.ScopeAddSignal

Purpose Add signal to scope

Prototype long ScopeAddSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLib.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeAddSignal method adds the signal with number
sigNum to the scope scNum. The signal should not already exist in the
scope. You can use xPCScopes.ScopeGetSignals to get a list of the
signals already present. Use the xPCTarget.GetSignalIdx method
to get the signal number.

7-47

xPCScopes.ScopeGetAutoRestart

Purpose Scope autorestart value

Prototype long ScopeGetAutoRestart(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetAutoRestart method returns the scope
autorestart flag value (1 if enabled, 0 if disabled). If the method detects
an error, it returns -1.

Description The xPCScopes.ScopeGetAutoRestartmethod gets the autorestart flag
value for scope scNum. Autorestart flag can be disabled (0) or enabled (1).

7-48

xPCScopes.ScopeGetData

Purpose Copy scope data to array

Prototype VARIANT ScopeGetData(long scNum, long signal_id,
long start,
long numsamples, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] signal_id Enter a signal number. Enter -1 to get
time stamped data.

[in] start Enter the first sample from which data
retrieval is to start.

[in] numsamples Enter the number of samples retrieved
with a decimation of decimation, starting
from the start value.

[in] decimation Enter a value such that every decimation
sample is retrieved in a scope window.

Return The xPCScopes.ScopeGetData method returns a VARIANT array with
elements containing the data used in a scope.

Description The xPCScopes.ScopeGetData method gets the data used in a scope.
Use this function for scopes of type SCTYPE_HOST. The scope must be
either in state Finished or in state Interrupted for the data to be
retrievable. (Use the xPCScopes.ScopeGetState method to check the
state of the scope.) The data must be retrieved one signal at a time. The
calling function determines and allocates the space ahead of time to
store the scope data. Use the method xPCScopes.ScopeGetSignals to
get the list of signals in the scope for signal_id.

7-49

xPCScopes.ScopeGetData

To get time stamped data, specify -1 for signal_id. From the output,
you can then get the number of nonzero elements.

7-50

xPCScopes.ScopeGetDecimation

Purpose Get decimation of scope

Prototype long ScopeGetDecimation(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetDecimation method returns the decimation
of scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetDecimation method gets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window.

7-51

xPCScopes.ScopeGetNumPrePostSamples

Purpose Get number of pre- or posttriggering samples before triggering scope

Prototype long ScopeGetNumPrePostSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumPrePostSamples method returns the
number of samples for pre- or posttriggering for scope scNum. If an
error occurs, this method returns -1.

Description The xPCScopes.ScopeGetNumPrePostSamples method gets the number
of samples for pre- or posttriggering for scope scNum. A negative number
implies pretriggering, whereas a positive number implies posttriggering
samples.

7-52

xPCScopes.ScopeGetNumSamples

Purpose Get number of samples in one data acquisition cycle

Prototype long ScopeGetNumSamples(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetNumSamples method returns the number of
samples in the scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetNumSamples method gets the number of
samples in one data acquisition cycle for scope scNum.

7-53

xPCScopes.ScopeGetSignals

Purpose Get list of signals

Prototype VARIANT ScopeGetSignals(long scNum, long size);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] size Enter an integer to allocate the number of elements
to be returned in the VARIANT array. This size is
required for the method to copy the list of signals
into the VARIANT array. The maximum number of
signals is 10.

Return The xPCScopes.ScopeGetSignals method returns a VARIANT array
with elements consisting of the list of signals defined for a scope.

Description The xPCScopes.ScopeGetSignals method gets the list of signals
defined for scope scNum. You can use the constant MAX_SIGNALS.

7-54

xPCScopes.ScopeGetStartTime

Purpose Get last data acquisition cycle start time

Prototype double ScopeGetStartTime(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetStartTime method returns the start time
for the last data acquisition cycle of a scope. If the method detects an
error, it returns -1.

Description The xPCScopes.ScopeGetStartTime method gets the time at which the
last data acquisition cycle for scope scNum started. This is only valid
for scopes of type SCTYPE_HOST.

7-55

xPCScopes.ScopeGetState

Purpose Get state of scope

Prototype BSTR ScopeGetState(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetState method returns the state of scope
scNum. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetState method gets the state of scope scNum,
or -1 upon error.

Constants to find the scope state have the following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to
start.

SCST_PREACQUIRING 5 Scope acquires a predefined
number of samples before
triggering.

SCST_WAITFORTRIG 1 After a scope is finished with
the preacquiring state, it waits
for a trigger. If the scope does
not preacquire data, it enters
the wait for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The
scope enters this state when
it leaves the wait for trigger
state.

7-56

xPCScopes.ScopeGetState

Constant Value Description

SCST_FINISHED 3 Scope is finished acquiring
data when it has attained the
predefined limit.

SCST_INTERRUPTED 4 The user has stopped
(interrupted) the scope.

7-57

xPCScopes.ScopeGetTriggerLevel

Purpose Get trigger level for scope

Prototype double ScopeGetTriggerLevel(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerLevel method returns the scope
trigger level. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerLevel method gets the trigger level
for scope scNum.

7-58

xPCScopes.ScopeGetTriggerMode

Purpose Get trigger mode for scope

Prototype long ScopeGetTriggerMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerMode method returns the scope
trigger mode. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerMode method gets the trigger mode
for scope scNum. Use the constants here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The
scope triggers when it is ready
to trigger, regardless of the
circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

7-59

xPCScopes.ScopeGetTriggerMode

See Also API function xPCScopes.ScopeGetTriggerModeStr

7-60

xPCScopes.ScopeGetTriggerModeStr

Purpose Get trigger mode as string

Prototype BSTR ScopeGetTriggerModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerModeStr method returns a string
containing the trigger mode string.

Description The xPCScopes.ScopeGetTriggerModeStr method gets the trigger
mode string for scope scNum. This method returns one of the following
strings.

Constant Description

FreeRun There is no trigger mode. The scope triggers
when it is ready to trigger, regardless of the
circumstances.

Software Only user intervention can trigger the scope. No
other triggering is possible.

Signal The scope is triggered only after a signal has
crossed a value.

Scope The scope is triggered by another scope at the
trigger point of the triggering scope, modified by
the value of triggerscopesample (see scopedata).

See Also API function xPCScopes.ScopeGetTriggerMode

7-61

xPCScopes.ScopeGetTriggerSample

Purpose Get sample number for triggering scope

Prototype long ScopeGetTriggerSample(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSamplemethod returns a nonnegative
integer for a real sample, and -1 for the special case where triggering
is at the end of the data acquisition cycle for a triggering scope. If the
method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSample method gets the number
of samples a triggering scope (scNum) acquires before starting data
acquisition on a second scope. This value is a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of
the data acquisition cycle for a triggering scope.

7-62

xPCScopes.ScopeGetTriggerSignal

Purpose Get trigger signal for scope

Prototype long ScopeGetTriggerSignal(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSignal method returns the scope
trigger signal. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSignal method gets the trigger
signal for scope scNum.

7-63

xPCScopes.ScopeGetTriggerSlope

Purpose Get trigger slope for scope

Prototype long ScopeGetTriggerSlope(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlope method returns the scope
trigger slope. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetTriggerSlope method gets the trigger slope
of scope scNum. Use the constants here to interpret the trigger slope:

String Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger slope must be
rising when the signal crosses
the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be
falling when the signal
crosses the trigger value.

See Also API function xPCScopes.ScopeGetTriggerSlopeStr

7-64

xPCScopes.ScopeGetTriggerSlopeStr

Purpose Get trigger slope as string

Prototype BSTR ScopeGetTriggerSlopeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetTriggerSlopeStr method returns a string
containing the trigger slope string.

Description The xPCScopes.ScopeGetTriggerSlopeStr method gets the trigger
slope string for scope scNum. This method returns one of the following
strings:

String Description

Either The trigger slope can be either rising or falling.

Rising The trigger slope must be rising when the signal
crosses the trigger value.

Falling The trigger slope must be falling when the signal
crosses the trigger value.

See Also API function xPCScopes.ScopeGetTriggerSlope

7-65

xPCScopes.ScopeGetType

Purpose Get type of scope

Prototype BSTR ScopeGetType(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.ScopeGetType method returns the scope type as a
string. If the method detects an error, it returns -1.

Description The xPCScopes.ScopeGetType method gets the type of scope scNum.
This method returns one of the following strings:

String Description

HOST Host scope

Target Target scope

7-66

xPCScopes.ScopeRemSignal

Purpose Remove signal from scope

Prototype long ScopeRemSignal(long scNum, long sigNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] sigNum Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeRemSignal method removes a signal from the
scope with number scNum. The scope must already exist, and signal
number sigNum must exist in the scope. Use xPCScopes.GetScopes to
determine the existing scopes, and use xPCScopes.ScopeGetSignals
to determine the existing signals for a scope. Use this function only
when the scope is stopped. Use xPCScopes.ScopeGetState to check
the state of the scope.

7-67

xPCScopes.ScopeSetAutoRestart

Purpose Scope autorestart value

Prototype long ScopeSetAutoRestart(long scNum, long onoff);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] onoff Enter value to enable (1) or disable (0)
scope autorestart.

Return The xPCScopes.ScopeSetAutoRestart method returns the scope
autorestart flag value (1 if enabled, 0 if disabled). If the method detects
an error, it returns -1.

Description The xPCScopes.ScopeSetAutoRestart method sets the autorestart flag
value for scope scNum. Autorestart flag can be disabled (0) or enabled (1).

7-68

xPCScopes.ScopeSetDecimation

Purpose Set decimation of scope

Prototype long ScopeSetDecimation(long scNum, long decimation);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] decimation Enter an integer for the decimation.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetDecimation method sets the decimation of
scope scNum. The decimation is a number, N, meaning every Nth sample
is acquired in a scope window. Use this function only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.

7-69

xPCScopes.ScopeSetNumPrePostSamples

Purpose Set number of pre- or posttriggering samples before triggering scope

Prototype long ScopeSetNumPrePostSamples(long scNum, long prepost);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] prepost A negative number means pretriggering, while
a positive number means posttriggering. This
function can only be used when the scope is
stopped.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetNumPrePostSamples method sets the number
of samples for pre- or posttriggering for scope scNum to prepost. Use this
method only when the scope is stopped. Use xPCScopes.ScopeGetState
to check the state of the scope. Use the xPCScopes.GetScopes method
to get a list of scope numbers.

7-70

xPCScopes.ScopeSetNumSamples

Purpose Set number of samples in one data acquisition cycle

Prototype long ScopeSetNumSamples(long scNum, long samples);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] samples Enter the number of samples you want to acquire
in one cycle.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetNumSamples method sets the number of
samples for scope scNum to samples. Use this function only when the
scope is stopped. Use xPCScopes.ScopeGetState to check the state
of the scope.

7-71

xPCScopes.ScopeSetTriggerLevel

Purpose Set trigger level for scope

Prototype long ScopeSetTriggerLevel(long scNum, double level);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] level Value for a signal to trigger data acquisition with
a scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerLevel method sets the trigger level to
level for scope scNum. Use this function only when the scope is stopped.
Use xPCScopes.ScopeGetStateto check the state of the scope.

7-72

xPCScopes.ScopeSetTriggerMode

Purpose Set trigger mode of scope

Prototype long ScopeSetTriggerMode(long scNum, long triggermode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggermode Trigger mode for a scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerMode method sets the trigger mode of
scope scNum to triggermode. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetStateto check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode.
The scope triggers when it is
ready to trigger, regardless
of the circumstances. This is
the default.

TRIGMD_SOFTWARE 1 Only user intervention can
trigger the scope. No other
triggering is possible.

7-73

xPCScopes.ScopeSetTriggerMode

Constant Value Description

TRIGMD_SIGNAL 2 The scope is triggered only
after a signal has crossed a
value.

TRIGMD_SCOPE 3 The scope is triggered by
another scope at the trigger
point of the triggering scope,
modified by the value of
triggerscopesample (see
scopedata).

7-74

xPCScopes.ScopeSetTriggerSample

Purpose Set sample number for triggering scope

Prototype long ScopeSetTriggerSample(long scNum, long trigScSample);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigScSample Enter a nonnegative integer for the
number of samples acquired by the
triggering scope before starting data
acquisition on a second scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSample method sets the number of
samples (trigScSample) a triggering scope acquires before it triggers
a second scope (scNum). Use the xPCScopes.GetScopes method to get
a list of scopes.

For meaningful results, set trigScSample between -1 and (nSamp-1).
nSamp is the number of samples in one data acquisition cycle for the
triggering scope. If you specify too large a value, the scope is never
triggered.

If you want to trigger a second scope at the end of a data acquisition
cycle for the triggering scope, use a value of -1 for trigScSamp.

7-75

xPCScopes.ScopeSetTriggerSignal

Purpose Select signal to trigger scope

Prototype long ScopeSetTriggerSignal(long scNum, long triggerSignal);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] trigSignal Enter a signal number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSignalmethod sets the trigger signal
of scope scNum to trigSig. The trigger signal trigSig must be one of
the signals in the scope. Use this method only when the scope is stopped.
You can use xPCScopes.ScopeGetSignals to get the list of signals in
the scope. UsexPCScopes.ScopeGetState to check the state of the
scope. Use the xPCScopes.GetScopes method to get a list of scopes.

7-76

xPCScopes.ScopeSetTriggerSlope

Purpose Set slope of signal that triggers scope

Prototype long ScopeSetTriggerSlope(long scNum, long triggerslope);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] triggerSlope Enter the slope mode for the signal that triggers
the scope.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSetTriggerSlope method sets the trigger slope
of scope scNum to trigSlope. Use this method only when the scope is
stopped. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

Use the constants defined here to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either
rising or falling.

TRIGSLOPE_RISING 1 The trigger signal value must
be rising when it crosses the
trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must
be falling when it crosses the
trigger value.

7-77

xPCScopes.ScopeSoftwareTrigger

Purpose Set software trigger of scope

Prototype long ScopeSoftwareTrigger(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeSoftwareTrigger method triggers scope scNum.
The scope must be in the state Waiting for trigger for this method to
succeed. Use xPCScopes.ScopeGetState to check the state of the scope.
Use the xPCScopes.GetScopes method to get a list of scopes.

You can use the xPCScopes.ScopeSoftwareTrigger method to trigger
the scope, regardless of the trigger mode.

7-78

xPCScopes.ScopeStart

Purpose Start data acquisition for scope

Prototype long ScopeStart(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeStart method starts or restarts the data
acquisition of scope scNum. If the scope does not have to preacquire
samples, it enters the Waiting for Trigger state. The scope must
be in state Waiting to Start, Finished, or Interrupted for this
function to succeed. Call xPCScopes.ScopeGetState to check the
state of the scope or, for host scopes that are already started, call
xPCScopes.IsScopeFinished. Use the xPCScopes.GetScopes method
to get a list of scopes.

7-79

xPCScopes.ScopeStop

Purpose Stop data acquisition for scope

Prototype long ScopeStop(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.ScopeStop method stops the scope scNum. This sets
the scope to the Interrupted state. The scope must be running for
this function to succeed. Use xPCScopes.ScopeGetState to determine
the state of the scope. Use the xPCScopes.GetScopes method to get
a list of scopes.

7-80

xPCScopes.TargetScopeGetGrid

Purpose Get status of grid line for particular scope

Prototype long TargetScopeGetGrid(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetGrid method returns the state of the
grid lines for scope scNum. If the method detects an error, it returns -1.

Description The xPCScopes.TargetScopeGetGrid method gets the state of the grid
lines for scope scNum (which must be of type SCTYPE_TARGET). A return
value of 1 implies grid on, while 0 implies grid off. Note that when the
scope mode is set to SCMODE_NUMERICAL, the grid is not drawn even
when the grid mode is set to 1.

Tip

• Use the xPCScopes.GetScopes method to get a list of scopes.

• Use xPCScopes.TargetScopeGetMode and
xPCScopes.TargetScopeSetMode to retrieve and set the scope mode.

7-81

xPCScopes.TargetScopeGetMode

Purpose Get scope mode for displaying signals

Prototype long TargetScopeGetMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetMode method returns the value
corresponding to the scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If the method detects an error, it returns -1.

Description The xPCScopes.TargetScopeGetMode method gets the mode of
the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCScopes.TargetScopeGetModeStr

7-82

xPCScopes.TargetScopeGetModeStr

Purpose Get scope mode string for displaying signals

Prototype BSTR TargetScopeGetModeStr(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetModeStr method returns the string
corresponding to the scope mode. The possible strings are

• Numerical

• Redraw

• Sliding

• Rolling

Description The xPCScopes.TargetScopeGetModeStr method gets the mode string
of the scope scNum, which must be of type SCTYPE_TARGET. Use the
xPCScopes.GetScopes method to get a list of scopes.

See Also API function xPCScopes.TargetScopeGetMode

7-83

xPCScopes.TargetScopeGetViewMode

Purpose Get view mode for target computer display

Prototype long TargetScopeGetViewMode();

Member
Of

XPCAPICOMLIB.xPCScopes

Return The xPCScopes.TargetScopeGetViewMode method returns the view
mode for the target computer screen. If the method detects an error, it
returns -1.

Description The xPCScopes.TargetScopeGetViewMode method gets the view (zoom)
mode for the target computer display. If the returned value is not zero,
the number is of the scope currently displayed on the screen. If the
value is 0, then all defined scopes are displayed on the target computer
screen, but no scopes are in focus (all scopes are unzoomed).

7-84

xPCScopes.TargetScopeGetYLimits

Purpose Get y-axis limits for scope

Prototype VARIANT TargetScopeGetYLimits(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return The xPCScopes.TargetScopeGetYLimits method returns the upper
and lower limits for target scopes.

Description The xPCScopes.TargetScopeGetYLimits method gets and copies the
upper and lower limits for a scope of type SCTYPE_TARGET and with scope
number scNum. If both elements are zero, the limits are autoscaled. Use
the xPCScopes.GetScopes method to get a list of scopes.

7-85

xPCScopes.TargetScopeSetGrid

Purpose Set grid mode for scope

Prototype long TargetScopeSetGrid(long scNum, long gridonoff);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in] gridonoff Enter a grid value (0 or 1).

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetGrid method sets the grid of a scope
of type SCTYPE_TARGET and scope number scNum to gridonoff. If
gridonoff is 0, the grid is off. If gridonoff is 1, the grid is on and grid
lines are drawn on the scope window. When the drawing mode of scope
scNum is set to SCMODE_NUMERICAL, the grid is not drawn even when
the grid mode is set to 1. Use the xPCScopes.GetScopes method to
get a list of scopes.

7-86

xPCScopes.TargetScopeSetMode

Purpose Set display mode for scope

Prototype long TargetScopeSetMode(long scNum, long mode);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

in] mode Enter the value for the mode.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetMode method sets the mode of a scope
of type SCTYPE_TARGET and scope number scNum to mode. You can use
one of the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCScopes.GetScopes method to get a list of scopes.

7-87

xPCScopes.TargetScopeSetViewMode

Purpose Set view mode for scope

Prototype long TargetScopeSetViewMode(long scNum);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetViewMode method sets the target
computer screen to display one scope with scope number scNum. If you
set scNum to 0, the target computer screen displays all the defined
scopes. Use the xPCScopes.GetScopes method to get a list of scopes.

7-88

xPCScopes.TargetScopeSetYLimits

Purpose Set y-axis limits for scope

Prototype long TargetScopeSetYLimits(long scNum, SAFEARRAY(double)*
Ylimitarray);

Member
Of

XPCAPICOMLIB.xPCScopes

Arguments [in] scNum Enter the scope number.

[in, out] Ylimitarray Enter a two-element array.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCScopes.TargetScopeSetYLimits method sets the y-axis limits
for a scope with scope number scNum and type SCTYPE_TARGET to the
values in the double array YlimitArray. The first element is the lower
limit, and the second element is the upper limit. Set both limits to
0.0 to specify autoscaling. Use the xPCScopes.GetScopes method to
get a list of scopes.

7-89

xPCTarget.AverageTET

Purpose Get average task execution time

Prototype double AverageTET();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.AverageTET method returns the average task execution
time (TET) for the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.AverageTET method gets the TET for the target
application. You can use this function when the target application is
running or when it is stopped.

7-90

xPCTarget.GetAppName

Purpose Get target application name

Prototype BSTR GetAppName();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetAppName method returns a string with the name
of the target application.

Description The xPCTarget.GetAppName method gets the name of the target
application. You can use the return value, model_name, in a printf or
similar statement. In case of error, the string is unchanged. Be sure
to allocate enough space to accommodate the longest target name you
have.

7-91

xPCTarget.GetExecTime

Purpose Get execution time for target application

Prototype double GetExecTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetExecTime method returns the current execution
time for a target application. If the method detects an error, it returns
-1.

Description The xPCTarget.GetExecTime method gets the current execution time
for the running target application. If the target application is stopped,
the value is the last running time when the target application was
stopped. If the target application is running, the value is the current
running time.

7-92

xPCTarget.GetNumOutputs

Purpose Get number of outputs

Prototype long GetNumOutputs();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumOutputs method returns the number of outputs
in the current target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetNumOutputs method gets the number of outputs in
the target application. The number of outputs equals the sum of the
input signal widths of the output blocks at the root level of the Simulink
model.

7-93

xPCTarget.GetNumParams

Purpose Get number of tunable parameters

Prototype long GetNumParams();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumParams method returns the number of tunable
parameters in the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetNumParams method gets the number of tunable
parameters in the target application. Use this method to see how many
parameters you can get or modify.

7-94

xPCTarget.GetNumSignals

Purpose Get number of signals

Prototype long GetNumSignals();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumSignals method returns the number of signals
in the target application. If the method detects an error, it returns -1.

Description The xPCTarget.GetNumSignalsmethod gets the total number of signals
in the target application that can be monitored from the host. Use this
method to see how many signals you can monitor.

7-95

xPCTarget.GetNumStates

Purpose Get number of states

Prototype long GetNumStates();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetNumStates method returns the number of states in
the target application. If the method detects an error, it returns -1.

Description The xPCTarget.GetNumStates method gets the number of states in the
target application.

7-96

xPCTarget.GetOutputLog

Purpose Copy output log data to array

Prototype VARIANT GetOutputLog(long start, long numsamples,
long decimation,
long output_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the output log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

[in] output_id Enter an output identification number.

Return The xPCTarget.GetOutputLog method returns output log data. You
get the data for each output signal. If the method detects an error, it
returns VT_ERROR, a scalar.

Description The xPCTarget.GetOutputLog method gets the output log and copies
that log to an array. Output IDs range from 0 to (N-1), where N is the
return value of xPCTarget.GetNumOutputs. Entering 1 for decimation
copies all values. Entering N copies every Nth value.

For start, the sample indices range from 0 to (N-1), where N is the
return value of xPCTarget.NumLogSamples. Get the maximum number
of samples by calling the method xPCTarget.NumLogSamples.

Note that the target application must be stopped before you get the
output log data.

7-97

xPCTarget.GetParam

Purpose Get parameter values

Prototype VARIANT GetParam(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter the index for a parameter.

Return The xPCTarget.GetParam method returns the parameter values of a
parameter.

Description The xPCTarget.GetParam method gets the parameter values of a
parameter identified by paramIdx. This method returns an array
of type VARIANT containing the parameter values, with the
conversion of the values being done in column-major format.
Each element in the array is a double, regardless of the data
type of the actual parameter. You can query the dimensions of
the array by calling the method xPCTarget.GetParamDims.
See the Microsoft Visual Basic .NET 2003 solution located in
matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo
for an example of how to use this method.

See Also API method xPCTarget.GetParamDims, xPCTarget.SetParam

7-98

xPCTarget.GetParamDims

Purpose Get row and column dimensions of parameter

Prototype VARIANT GetParamDims(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Parameter index.

Return The xPCTarget.GetParamDims method returns a VARIANT array of two
elements.

Description The xPCTarget.GetParamDims method gets a VARIANT array of two
elements. The first element contains the number of rows of the
parameter, the second element contains the number of columns for
your parameter.

7-99

xPCTarget.GetParamIdx

Purpose Get parameter index

Prototype long GetParamIdx(BSTR blockName, BSTR paramName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] blockName Enter the full block path generated by the
Simulink Coder software.

[in] paramName Enter the parameter name for a parameter
associated with the block.

Return The xPCTarget.GetParamIdx method returns the parameter index for
the parameter name. If the method detects an error, it returns -1.

Description The xPCTarget.GetParamIdx method gets the parameter index for
the parameter name (paramName) associated with a Simulink block
(blockName). Both blockName and paramName must be identical to those
generated at target application building time. The block names should
be referenced from the file model_namept.m in the generated code,
where model_name is the name of the model. Note that a block can have
one or more parameters.

7-100

xPCTarget.GetParamName

Purpose Get parameter name

Prototype VARIANT GetParamName(long paramIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] paramIdx Enter a parameter index.

Return The xPCTarget.GetParamName method returns a VARIANT array that
contains two elements, the block path and parameter name, as strings.

Description The xPCTarget.GetParamName method gets the parameter name
and block name for a parameter with the index paramIdx. If
paramIdx is invalid, xPCGetLastError returns nonzero, and the
strings are unchanged. Get the parameter index with the method
xPCTarget.GetParamIdx.

7-101

xPCTarget.GetSampleTime

Purpose Get sample time

Prototype double GetSampleTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetSampleTime method returns the sample time, in
seconds, of the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetSampleTime method gets the sample time, in
seconds, of the target application. You can get the error by using the
method xPCGetLastError.

7-102

xPCTarget.GetSignal

Purpose Get signal value

Prototype double GetSignal(long sigNum);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigNum Enter a signal number.

Return The xPCTarget.GetSignal method returns the current value of signal
sigNum. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignal method gets the current value of a signal.
Use the xPCTarget.GetSignalIdx method to get the signal number.

7-103

xPCTarget.GetSignalidsfromLabel

Purpose Get signal IDs from signal label

Prototype VARIANT GetSignalidsfromLabel(BSTR sigLabel);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigLabel Enter a signal label.

Return The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel. If no
labels exist, the method returns an empty string.

Description The xPCTarget.GetSignalidsfromLabel method returns a VARIANT
array of the signal elements contained in the signal sigLabel. Signal
labels must be unique.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API method xPCTarget.GetSignalLabel

7-104

xPCTarget.GetSignalLabel

Purpose Get signal label

Prototype BSTR GetSignalLabel(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalLabelmethod returns the label of the signal.
If no labels exist, the method returns an empty string.

Description The xPCTarget.GetSignalLabel method copies and gets the signal
label of a signal with sigIdx. The method returns the signal label.
This method assumes that you already know the signal index. Signal
labels must be unique.

This method assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal
Properties Controls”). Note that the Simulink Real-Time software
refers to Simulink signal names as signal labels. The creator of the
application should already know the signal name/label.

See Also API method xPCTarget.GetSignalidsfromLabel

7-105

xPCTarget.GetSignalIdx

Purpose Get signal index

Prototype long GetSignalIdx(BSTR sigName);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigName Enter a signal name.

Return The xPCTarget.GetSignalIdx method returns the index for the signal
with name sigName. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignalIdx method gets the index of a signal. The
name must be identical to the name generated when the application was
built. You should reference the name from the file model_namebio.m in
the generated code, where model_name is the name of the model. The
creator of the application should already know the signal name.

7-106

xPCTarget.GetSignalName

Purpose Copy signal name to character array

Prototype BSTR GetSignalName(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter a signal index.

Return The xPCTarget.GetSignalName method returns the name of the signal.

Description The xPCTarget.GetSignalName method copies and gets the signal
name, including the block path, of a signal with sigIdx. The method
returns a signal name, which makes it convenient to use in a printf
or similar statement. This method assumes that you already know
the signal index.

7-107

xPCTarget.GetSignals

Purpose Get vector of signal values

Prototype VARIANT GetSignals(long NumOfSignals, SAFEARRAY(int)*
SignalsIdxArray);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] NumOfSignals Enter the number of signals to acquire (the
number of IDs in SignalsIdxArray).

[out] SignalsIdxArray Enter the IDs of the signals to acquire.

Return The xPCTarget.GetSignals method returns a double-valued variant
array containing the current value of a vector of signals. If the method
detects an error, it returns VT_ERROR, a scalar.

Description This function returns the values of a vector of up to 1000 signals as fast
as it can acquire them. The values are converted to doubles regardless
of the actual data type of the signal.

Tip

• Pass an integer array of signal numbers into SignalsIdxArray. Get
the signal numbers with the function xPCTarget.GetSignalIdx.

• The signal values may not be at the same time step. To get signal
values at the same time step, define a scope of type SCTYPE_HOST and
use xPCScopes.ScopeGetData.

The function xPCTarget.GetSignal does the same thing for a single
signal, and could be used multiple times to achieve the same result.

7-108

xPCTarget.GetSignals

However, xPCGetSignals is faster and the signal values are more likely
to be spaced closely together.

See Also API functions xPCTarget.GetSignal, xPCTarget.GetSignalIdx

7-109

xPCTarget.GetSignalWidth

Purpose Get width of signal

Prototype long GetSignalWidth(long sigIdx);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] sigIdx Enter the index of a signal.

Return The xPCTarget.GetSignalWidth method returns the signal width for a
signal with sigIdx. If the method detects an error, it returns -1.

Description The xPCTarget.GetSignalWidth method gets the number of signals for
a specified signal index. Although signals are manipulated as scalars,
the width of the signal might be useful to reassemble the components
into a vector. A signal’s width is the number of signals in the vector.

7-110

xPCTarget.GetStateLog

Purpose Get state log

Prototype VARIANT GetStateLog(long start, long numsamples,
long decimation,
long state_id);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
output log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[in] state_id Enter a state identification number.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation
is the responsibility of the caller.

Return The xPCTarget.GetStateLog method returns the state log. If the
method detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetStateLog method gets the state log. You get
the data for each state signal in turn by specifying the state_id.
State IDs range from 1 to (N-1), where N is the return value of
xPCTarget.GetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For start, the
sample indices range from 0 to (N-1), where N is the return value
of xPCTarget.NumLogSamples. Use the xPCTarget.NumLogSamples
method to get the maximum number of samples.

Note that the target application must be stopped before you get the
number.

7-111

xPCTarget.GetStopTime

Purpose Get stop time

Prototype double GetStopTime();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetStopTime method returns the stop time as a double,
in seconds, of the target application. If the method detects an error, it
returns -1.

Description The xPCTarget.GetStopTime method gets the stop time, in seconds, of
the target application. This is the amount of time the target application
runs before stopping.

7-112

xPCTarget.GetTETLog

Purpose Get TET log

Prototype VARIANT GetTETLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from the
TET log.

[in] decimation Select whether to copy all the sample values or
every Nth value.

[out, retval]
Outarray

The log is stored in Outarray, whose allocation is
the responsibility of the caller.

Return The xPCTarget.GetTETLog method returns the TET log. If the method
detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetTETLog method gets the task execution time (TET)
log. Entering 1 for decimation copies all values. Entering N copies
every Nth value. For start, the sample indices range from 0 to (N-1),
where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the maximum number of
samples.

Note that the target application must be stopped before you get the
number.

7-113

xPCTarget.GetTimeLog

Purpose Get time log

Prototype VARIANT GetTimeLog(long start, long numsamples,
long decimation);

Member
Of

XPCAPICOMLib.xPCTarget

Arguments [in] start Enter the index of the first sample to copy.

[in] numsamples Enter the number of samples to copy from
the time log.

[in] decimation Select whether to copy all the sample values
or every Nth value.

Return The xPCTarget.GetTimeLog method returns the time log. If the method
detects an error, it returns VT_ERROR, a scalar.

Description The xPCTarget.GetTimeLog method gets the time log. This is
especially relevant in the case of value-equidistant logging, where
the logged values might not be uniformly spaced in time. Entering
1 for decimation copies all values. Entering N copies every Nth
value. For start, the sample indices range from 0 to (N-1), where
N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the number of samples.

Note that the target application must be stopped before you get the
number.

7-114

xPCTarget.GetxPCError

Purpose Get error string

Prototype BSTR GetxPCError();

Member
Of

XPCAPICOMLib.xPCTarget

Return The xPCTarget.GetxPCError method returns the string for the last
reported error. If the software has not reported an error, this method
returns 0.

Description The xPCTarget.GetxPCError method gets the string of the error last
reported by another COM API method. This value is reset every time
you call a new method. Therefore, you should check this constant value
immediately after a call to an API COM method. You can use this
method in conjunction with the xPCTarget.isxPCError method, which
detects that an error has occurred.

See Also API method xPCTarget.isxPCError

7-115

xPCTarget.Init

Purpose Initialize target object to communicate with target computer

Prototype long Init(IxPCProtocol* xPCProtocol);

Member
Of

XPCAPICOMLib.xPCTarget

Return If the method detects an error, it returns -1. Otherwise, it returns 0.

If the xPCTarget.Init method initializes the target object without
detecting an error, it returns 0. If the target object fails to initialize,
this method returns -1.

Description The xPCTarget.Init method initializes the target object to
communicate with the target computer referenced by the xPCProtocol
object.

7-116

xPCTarget.IsAppRunning

Purpose Return running status for target application

Prototype long IsAppRunning();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the target application is stopped, the xPCTarget.IsAppRunning
method returns 0. If the target application is running, this method
returns 1. If the method detects an error, it returns -1.

Description The xPCTarget.IsAppRunning method returns 1 or 0 depending on
whether the target application is stopped or running.

7-117

xPCTarget.IsOverloaded

Purpose Return overload status for target computer

Prototype long IsOverloaded();

Member
Of

XPCAPICOMLib.xPCTarget

Return If the target application has overloaded the CPU, the
xPCTarget.IsOverloaded method returns 1. If it has not overloaded
the CPU, the method returns 0. If the method detects an error, it
returns -1.

Description The xPCTarget.IsOverloaded method checks if the target application
has overloaded the target computer and returns 1 if it has and 0 if it
has not. If the target application is not running, the method returns 0.

7-118

xPCTarget.isxPCError

Purpose Return error status

Prototype long isxPCError();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If an error occurred, the method returns 1. Otherwise, it returns 0.

Description Use the xPCTarget.isxPCError method to check for errors that might
occur after a call to the xPCTarget class methods. If the method detects
that an error occurred, call the xPCTarget.GetxPCError method to
get the string for the error.

See Also API method xPCTarget.GetxPCError

7-119

xPCTarget.LoadApp

Purpose Load target application onto target computer

Prototype long LoadApp(BSTR pathstr, BSTR filename);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] pathstr Enter the full path to the target application file,
excluding the file name. For example, in C, use a
string like "C:\\work", in Microsoft Visual Basic,
use a string like 'C:\work'.

[in] filename Enter the name of a compiled target application
(*.dlm) without the file extension. For example,
in C use a string like "xpcosc", in Microsoft
Visual Basic, use a string like 'xpcosc'.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.LoadApp method loads the compiled target application
to the target computer. pathstr must not contain the trailing
backslash. pathstr can be set to NULL or to the string 'nopath' if the
application is in the current folder. The variable filename must not
contain the target application extension.

Before returning, xPCTarget.LoadApp waits for a certain amount of
time before checking whether the model initialization is complete. In the
case where the model initialization is incomplete, xPCTarget.LoadApp
returns a timeout error to indicate a connection problem (for example,
ETCPREAD). By default, xPCTarget.LoadApp checks for target readiness
five times, with each attempt taking approximately 1 second (less if
the target is ready). However, for larger models or models requiring
longer initialization (for example, those with thermocouple boards),
the default might not be long enough and a spurious timeout can

7-120

xPCTarget.LoadApp

be generated. The methods xPCProtocol.GetLoadTimeOut and
xPCProtocol.SetLoadTimeOut control the number of attempts made.

7-121

xPCTarget.MaximumTET

Purpose Copy maximum task execution time to array

Prototype VARIANT MaximumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaximumTET method returns a VARIANT object
containing the maximum task execution time (TET) and the time at
which the maximum TET was achieved. The maximum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MaximumTET method returns the maximum TET that
was achieved during the previous target application run.

7-122

xPCTarget.MaxLogSamples

Purpose Return maximum number of samples that can be in log buffer

Prototype long MaxLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MaxLogSamples method returns the total number of
samples. If the method detects an error, it returns -1.

Description The xPCTarget.MaxLogSamples method returns the total number of
samples that can be returned in the logging buffers.

Note that the target application must be stopped before you get the
number.

7-123

xPCTarget.MinimumTET

Purpose Copy minimum task execution time to array

Prototype VARIANT MinimumTET();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.MinimumTET method returns a VARIANT object
containing the minimum task execution time (TET) and the time at
which the minimum TET was achieved. The minimum TET value is
copied into the first element, and the time at which it was achieved
is copied into the second element.

Description The xPCTarget.MinimumTET method returns the minimum task
execution time (TET) that was achieved during the previous target
application run.

7-124

xPCTarget.NumLogSamples

Purpose Return number of samples in log buffer

Prototype long NumLogSamples();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. If the method detects an error, it returns -1.

Description The xPCTarget.NumLogSamples method returns the number of samples
in the log buffer. In contrast to xPCTarget.MaxLogSamples, which
returns the maximum number of samples that can be logged (because of
buffer size constraints), xPCtarget.NumLogSamples returns the number
of samples actually logged.

Note that the target application must be stopped before you get the
number.

7-125

xPCTarget.NumLogWraps

Purpose Return number of times log buffer wraps

Prototype long NumLogWraps();

Member
Of

XPCAPICOMLIB.xPCTarget

Return The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps. If the method detects an error, it returns -1.

Description The xPCTarget.NumLogWraps method returns the number of times the
log buffer wraps.

Note that the target application must be stopped before you get the
number.

7-126

xPCTarget.SetParam

Purpose Change parameter value

Prototype long SetParam(long paramIdx, SAFEARRAY(double)*
newparamVal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] paramIdx Parameter index.

[in, out] newparamVal Vector of doubles, assumed to be the size
required by the parameter type.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetParam method sets the parameter paramIdx to
the value in newparamVal. For matrices, newparamVal should be a
vector representation of the matrix in column-major format. Although
newparamVal is a vector of doubles, the method converts the values to
the expected data types (using truncation) before setting them.

See Also API methods xPCTarget.GetParam, xPCTarget.GetParamDims,
xPCTarget.GetParamIdx

7-127

xPCTarget.SetSampleTime

Purpose Change sample time for target application

Prototype long SetSampleTime(double ts);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] ts Sample time for the target application.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetSampleTime method sets the sample time, in
seconds, of the target application to ts. Use this method only when
the application is stopped.

7-128

xPCTarget.SetStopTime

Purpose Change stop time of target application

Prototype long SetStopTime(double tfinal);

Member
Of

XPCAPICOMLIB.xPCTarget

Arguments [in] tfinal Enter the stop time, in seconds.

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.SetStopTime method sets the stop time of the target
application to the value in tfinal. The target application will run for
this number of seconds before stopping. Set tfinal to -1.0 to set the
stop time to infinity.

7-129

xPCTarget.StartApp

Purpose Start target application

Prototype long StartApp()

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.StartApp method starts the target application loaded
on the target machine.

7-130

xPCTarget.StopApp

Purpose Stop target application

Prototype long StopApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.StopApp method stops the target application loaded on
the target computer. The target application remains loaded, and the
parameter changes you made remain intact. If you want to stop and
unload an application, use xPCTarget.UnLoadApp.

7-131

xPCTarget.UnLoadApp

Purpose Unload target application

Prototype long UnLoadApp();

Member
Of

XPCAPICOMLIB.xPCTarget

Return If the method detects an error, it returns 0. Otherwise, it returns -1.

Description The xPCTarget.UnloadApp method stops the current target application,
removes it from the target computer memory, and resets the target
computer in preparation for receiving a new target application. The
method xPCTarget.LoadApp calls this method before loading a new
target application.

7-132

8

MATLAB API

8 MATLAB® API

MATLAB API — Alphabetical List

8-2

fc422mexcalcbits

Purpose Calculate parameter values for Fastcom 422/2-PCI board

Syntax [a b] = fc422mexcalcbits(frequency)
[a b df] = fc422mexcalcbits(frequency)

Description [a b] = fc422mexcalcbits(frequency) accepts a baud rate and
converts this value into values for the parameter Clocks Bits of the
Fastcom® 422/2-PCI driver clock.

[a b df] = fc422mexcalcbits(frequency) accepts a baud rate and
converts this value into a vector containing:

• Values for the parameter Clocks Bits of the Fastcom 422/2-PCI
driver block.

• The actual baud rate that is created by the Clocks Bits parameters.

Input
Arguments

frequency - Baud rate for the board, in units of baud/second
positive-valued scalar

The baud rate must be between 30e3 and 1.5e6. This limitation is a
hardware limitation of the clock circuit.

Example: 30e3

Data Types
double

Output
Arguments

[a b] - Values for driver block parameter
vector of scalars

[a b df] - Values for driver block parameter and actual baud
rate that results
vector of scalars

• a b – Values for the driver block parameter.

• df – The actual baud rate that is created by the driver block
parameter. The clock circuit has limited resolution and is unable to
perfectly match an arbitrary frequency.

8-3

fc422mexcalcbits

Examples Clocks Bits Values

[a b] = fc422mexcalcbits(30e3)

a =

2111792

b =

23

Clocks Bits Values with Actual Result

[a b df] = fc422mexcalcbits(1.49e6)

a =

3805896

b =

23

df =

1.4901e+06

8-4

macaddr

Purpose Convert string-based MAC address to vector-based address

Syntax macaddr(MAC_address)

Description macaddr(MAC_address) converts a string-based MAC address to a
vector-based MAC address.

Input
Arguments

MAC_address - MAC address to be converted
delimited string

The value is entered as a string comprised of six colon-delimited fields
of two-digit hexadecimal numbers.

Example: ’01:23:45:67:89:ab’

Data Types
char

Examples Simple

macaddr('01:23:45:67:89:ab')

ans =

1 35 69 103 137 171

See Also “Model-Based Ethernet Communications”

8-5

profile_xpc

Purpose Collect profiling data

Syntax profData = profile_xpc(profileInfo)

Description profData = profile_xpc(profileInfo) collects and displays
execution profiling data from a target computer that is running a
suitably configured application. By default, it displays an execution
profile plot and a code execution profiling report.

Input
Arguments

profileInfo - Profile configuration information
structure

Profile configuration data, consisting of the following fields:

rawdataonhost - Flag specifying whether the raw data is on
host or target computer
0 (default) | 1

• 0 — The raw data file xPCTrace.csv is on the target computer.
Transfer the file from the target computer to the host.

• 1 — The raw data file xPCTrace.csv is in the current folder on the
host computer.

Data Types
double

modelname - Name of the model to be profiled
usrname

The name can include the model file extension.

Data Types
char

noplot - Flag suppressing execution profile plot
0 (default) | 1

• 0— Display the execution profile plot on the host computer monitor.

8-6

profile_xpc

• 1 — Do not display the execution profile plot on the host computer
monitor.

Data Types
double

noreport - Flag suppressing code execution profiling report
0 (default) | 1

• 0— Display the code execution profiling report on the host computer
monitor.

• 1 — Do not display the code execution profiling report on the host
computer monitor.

Data Types
double

Output
Arguments

profData - Profile results data
structure

Profile results data stored in an object of type
coder.profile.ExecutionTime. The same data is assigned to the
variable declared in the Configuration Parameters Workspace
variable text box.

TimerTicksPerSecond - Number of seconds per timer tick
double

Scales the execution time tick.

Sections - Array of results data for profiled code sections
array

Each array item is an object of type
coder.profile.ExecutionTimeSection.

Examples Concurrent Execution Example

Profile the concurrent execution model dxpcmds6t using default settings
on a multicore target computer.

8-7

profile_xpc

Configure model dxpcmds6t for profiling. Build, download, and execute
the model.

Profile the target application execution.

profileInfo.modelname = 'dxpcmds6t.mdl';
profData = profile_xpc(profileInfo);

The Execution Profile plot shows the allocation of execution cycles
across the four processors, indicated by the colored horizontal bars.

8-8

profile_xpc

The Code Execution Profiling Report displays model execution profile
results for each task.

8-9

profile_xpc

Profile Data Description

Maximum
turnaround time

Longest time between when the task starts and
finishes. This time includes task preemptions
(interrupts).

Average
turnaround time

Average time between when the task starts and
finishes. This time includes task preemptions
(interrupts).

Maximum
execution time

Longest time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Average execution
time

Average time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Calls Number of times the generated code section is
called.

To display the profile data for the generated code section, click the

Membrane icon in the Coder Execution Profiling Report.

See Also TimerTicksPerSecond | Sections

Related
Examples

• “Configure Target Application for Profiling”
• “Generate Target Application Execution Profile”

8-10

slrt

Purpose Create object to manage target computer

Syntax target_object = slrt
target_object = slrt(target_name)

Description target_object = slrt constructs a target object representing the
default target computer.

target_object = slrt(target_name) constructs a target object
representing the target computer designated by target_name.

Input
Arguments

target_name - Name assigned to target computer
string

Example: ‘TargetPC1’

Data Types
char

Output
Arguments

target_object - Target object representing target computer
structure

Examples Default target computer

Creates a target object to communicate with the default target
computer. Reports the status of the default target computer, in this
case connected with the loader running.

target_object = slrt

Target: TargetPC1
Connected = Yes
Application = loader

Specific target computer

Creates a target object to communicate with target computer TargetPC1,
Reports the status of the target computer, in this case not connected.

8-11

slrt

target_object = slrt('TargetPC1')

Target: TargetPC1
Connected = No

See Also SimulinkRealTime.target (constructor) |
SimulinkRealTime.TargetSettings | SimulinkRealTime.target.get
| SimulinkRealTime.target.set

8-12

slrtbench

Purpose Benchmark Simulink Real-Time models on target computer

Syntax slrtbench
slrtbench benchmark
slrtbench benchmark -reboot
slrtbench benchmark -cleanup
slrtbench benchmark -verbose
slrtbench benchmark -reboot -cleanup -verbose

expected_results = slrtbench()
current_results = slrtbench(benchmark, ___)

Description slrtbench benchmarks the real-time execution performance of
Simulink Real-Time applications on your target computer. It compares
the result to stored benchmark results from other computers.

Benchmark execution includes generating benchmark models, building
and downloading Simulink Real-Time applications, searching for the
minimal achievable sample time, and displaying results.

slrtbench without an argument displays representative results for
benchmarks run on various target computers with various compiler
versions. Display includes:

• Relative Performance — Bar graph containing the computers tested,
ranked by relative performance.

• Minimal achievable sample times in µs — Table containing, for each
target computer tested, the minimal achievable sample time for the
benchmarks, in microseconds.

• Target Information — Technical information about the target
computers benchmarked.

Depending upon the value of benchmark, slrtbench benchmark
produces different outputs:

8-13

slrtbench

• slrtbench this displays benchmark results your target computer,
compared with the representative benchmark results for other target
computers:

- Relative Performance — Bar graph containing the computers
tested, ranked by relative performance.

- Minimal achievable sample times in µs — Table containing, for
each target computer tested, the minimal achievable sample time
for the benchmarks, in microseconds.

- Target Information — Technical information about the target
computers benchmarked.

The entry for your target computer is highlighted.

• slrtbench benchmark prints the benchmark name, the number
of blocks, the model build time in seconds, the execution time in
seconds, and the minimal achievable sample time in microseconds in
the Command Window.

slrtbench benchmark -reboot runs the benchmark, then restarts
the target computer.

slrtbench benchmark -cleanup runs the benchmark, plots or prints
benchmark results, and deletes the build files.

slrtbench benchmark -verbose prints build output, runs the
benchmark, and plots or prints benchmark results.

slrtbench benchmark -reboot -cleanup -verbose prints build
output, restarts the target computer, deletes build files, and plots or
prints results.

You can add zero or more of these control arguments in arbitrary order.

expected_results = slrtbench() returns the benchmark results for
the five predefined benchmarks in a structure array.

8-14

slrtbench

Depending upon the value of benchmark, current_results =
slrtbench(benchmark, ___) returns different results:

• slrtbench('this') returns the benchmark results for the
predefined benchmarks in a structure array.

• slrtbench(benchmark) returns the benchmark results for the
specified model in a structure.

Input
Arguments

benchmark - Benchmark name or model name
this | usermdl | minimal | f14 | f14*5 | f14*10 | f14*25 | f14*100

Benchmark, specified as a literal string or string variable containing
one of:

this All five predefined benchmark
models (minimal, f14, f14*5,
f14*10, f14*25)

usermdl Your model, usermdl.

minimal Minimal model consisting of
three blocks (Constant, Gain,
Termination).

f14 Standard Simulink example f14
(62 blocks, 10 continuous states).

f14*5 Five f14 systems modeled in
subsystems (310 blocks, 50
continuous states).

f14*10 Ten f14 systems (620 blocks, 100
continuous states).

f14*25 25 f14 systems (1550 blocks, 250
continuous states).

f14*100 100 f14 systems (6200 blocks,
1000continuous states).

8-15

slrtbench

When using function form, enclose literal arguments (this, -reboot) in
single quotes ('this','-reboot').

Example:

Data Types
char

Output
Arguments

expected_results - Results of predefined benchmarks previously
run on representative target computers
struct array

Contains representative benchmark results in a structure array with
element fields:

Machine Target computer information
string containing CPU type, CPU
speed, compiler

BenchResults Target computer benchmark
performance for all five
predefined benchmarks

Desc Target computer descriptor string
containing machine type, RAM
size, cache size

current_results - Current results of specified benchmark
struct

Contains actual benchmark results in a structure with fields:

Name Benchmark name

nBlocks Number of blocks in benchmark

BuildTime Elapsed time in seconds to build
benchmark

8-16

slrtbench

BenchTime Elapsed time in seconds to run
benchmark

Tsmin Minimal achievable sample time
in seconds for benchmark

Tips • Before you run slrtbench, you must be able to start the target
computer, connect the host computer to the target computer, and run
the confidence test, slrttest, with no failures.

• After running slrtbench on your model and system, set your model
sample time to the minimal achievable sample time value reported.
Smaller sample times overload the target computer.

• The stored benchmark results were collected with Multicore CPU
support disabled. When evaluating your system, temporarily
disable this target setting using slrtexplr.

• The stored benchmark models were compiled using a sampling of the
supported compilers. When evaluating your system, find the closest
match to the compiler that you are using.

• Benchmark minimal has neither continuous nor discrete states. It
provides information about the target computer interrupt latencies.

Examples slrtbench

Show representative benchmark results from various target computers.

Start the target computer and run confidence test.

slrttest

Display representative results on predefined benchmarks.

slrtbench

8-17

slrtbench

8-18

slrtbench

slrtbench this

Benchmark the target computer with the predefined benchmarks.

Start the target computer and run confidence test.

slrttest

Run the benchmark models and display results.

slrtbench this

Starting Simulink Real-Time build procedure
for model: xpcminimal

Successful completion of build procedure for model: xpcminimal
Looking for target: TargetPC1
Download model onto target: TargetPC1

Running benchmark for model: xpcminimal
.
.
.
Running benchmark for model: f14tmp1
.
.
.
Running benchmark for model: f14tmp5
.
.
.
Running benchmark for model: f14tmp10
.
.
.
Running benchmark for model: f14tmp25
.
.
.

8-19

slrtbench

Running benchmark for model: f14tmp100

8-20

slrtbench

8-21

slrtbench

slrtbench this -verbose -reboot -cleanup

Benchmark the target computer with the predefined benchmarks, and
then delete build files.

Start the target computer and run confidence test.

slrttest

Run the benchmark models, delete build files, and display results.

slrtbench this -verbose -reboot -cleanup

Starting Simulink Real-Time build procedure
for model: xpcminimal

Generating code into build folder: xpcminimal_xpc_rtw
Invoking Target Language Compiler on xpcminimal.rtw
.
.
.
Successful completion of build procedure for model:

xpcminimal
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.
Running benchmark for model: xpcminimal
Reboot target: TargetPC1........ OK.
.
.
Running benchmark for model: f14tmp1
Reboot target: TargetPC1........ OK.
.
.

8-22

slrtbench

.
Running benchmark for model: f14tmp5
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp10
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp25
Reboot target: TargetPC1........ OK.
.
.
.
Running benchmark for model: f14tmp100
Reboot target: TargetPC1........ OK.

8-23

slrtbench

8-24

slrtbench

slrtbench xpcosc

Use model xpcosc to benchmark the target computer, then clean up
build files

Start the target computer and run confidence test.

slrttest

Run benchmark on xpcosc, delete build files, and print results.

slrtbench xpcosc

Starting Simulink Real-Time build procedure
for model: xpcosc
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1

Running benchmark for model: xpcosc

Benchmark results for model: xpcosc
Number of blocks in model: 10
Elapsed time for model build (sec): 33.4
Elapsed time for model benchmark (sec): 236.7
Minimal achievable sample time (microsec): 12.4

slrtbench xpcosc --verbose -reboot -cleanup

Use model xpcosc to benchmark the target computer, then clean up
build files

Start the target computer and run confidence test.

slrttest

Run benchmark on xpcosc, delete build files, and print results.

slrtbench xpcosc -verbose -reboot -cleanup

8-25

slrtbench

Starting Simulink Real-Time build procedure
for model: xpcosc
Generating code into build folder: xpcosc_slrt_rtw
Invoking Target Language Compiler on xpcosc.rtw
.
.
.
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.

Running benchmark for model: xpcosc
Reboot target: TargetPC1........ OK

Benchmark results for model: xpcosc
Number of blocks in model: 10
Elapsed time for model build (sec): 29.4
Elapsed time for model benchmark (sec): 210.5
Minimal achievable sample time (microsec): 10.9

expected_results = slrtbench()

Return a structure array containing benchmark results showing what
to expect of various target computers.

Start the target computer and run confidence test.

slrttest

Return an array with representative results for each processor type,
in arbitrary order.

8-26

slrtbench

expected_results = slrtbench();
expected_results(1)

ans =

Machine: 'Generic Intel(R) Core(TM) 2 Quad (VisualC 10.0)'
BenchResults: [1.2359e-05 1.3184e-05 1.5623e-05 1.8978e-05

3.1175e-05 1.2723e-04]
Desc: '% Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

% RAM: 2044MB
% CP...'

8-27

slrtbench

8-28

slrtbench

current_results =
slrtbench(’xpcosc’,’-verbose’,’-reboot’,’-cleanup’)

Benchmark the target computer using the xpcosc model and all control
options, and return a structure array with results.

Start the target computer and run confidence test.

slrttest

Build 'xpcosc', print build messages, run benchmark, delete build
files, restart the target computer, and return results.

current_results = slrtbench('xpcosc','-verbose','-reboot',
'-cleanup')

Starting Simulink Real-Time build procedure
for model: xpcosc
Generating code into build folder: xpcosc_slrt_rtw
Generated code for 'xpcosc' is up to date because no

structural, parameter or code replacement library
changes were found.

.

.

.
Successful completion of build procedure for model: xpcosc
Looking for target: TargetPC1
Download model onto target: TargetPC1
Create SimulinkRealTime.target object tg
Target: TargetPC1

Connected = Yes
.
.
.
Running benchmark for model: xpcosc
Reboot target: TargetPC1......... OK

Benchmark results for model: xpcosc

8-29

slrtbench

Number of blocks in model: 10
Elapsed time for model build (sec): 14.5
Elapsed time for model benchmark (sec): 200.5
Minimal achievable sample time (microsec): 11.9

current_results =

Name: 'xpcosc'
nBlocks: 10

BuildTime: 14.4840
BenchTime: 200.4516

Tsmin: 1.1875e-05

See Also slrttest

External
Web Sites

• http://www.mathworks.com/support/compilers/current_release/

8-30

http://www.mathworks.com/support/compilers/current_release/

slrtdrivertool

Purpose Construct skeleton for custom driver

Syntax slrtdrivertool

Description slrtdrivertool opens the Simulink Real-Time Driver Authoring Tool.
Using this tool, you can:

• Define the driver name.

• Specify how the sample time is defined (inherited or as a mask
parameter).

• Define input and output ports.

• Define parameters and working variables.

• Generate a C file template (optional).

• Generate a block and mask dialog box (optional).

• Save and load settings.

• Build a skeleton driver.

Examples Define a skeleton driver

slrtdrivertool

8-31

slrtdrivertool

8-32

slrtexplr

Purpose Configure target computer and target application for execution

Syntax slrtexplr

Description The command slrtexplr opens Simulink Real-Time Explorer,
providing the following capabilities:

• Environment configuration — Use the Target Properties pane to
configure the Simulink Real-Time environment properties and create
a Simulink Real-Time bootable image.

Use node File system under theMATLAB Session tree to browse
the target computer file system.

• Control — Use the Targets and Applications panes to load, unload,
and run target applications. You can change stop time and sample
times without regenerating code. You can get task execution time
information during or after the last run.

• Signal acquisition — Use the Scopes pane and the Model
Hierarchy node in the Applications pane to interactively monitor
signals, add a host, target, or file scope, add or remove signals, and
save and load signal groups.

• Parameter tuning — Use the Model Hierarchy node in the
Applications pane to change tunable parameters in your target
application and save and load parameter groups.

• Instrumentation — Use the Palette and Panels panes to create
a graphical instrument panel for acquiring signals and tuning
parameters.

• Window configuration — Use the tab and the icon to make
multiple workspaces visible simultaneously.

Use File > Save Layout and Load Layout to save and restore the
Simulink Real-Time Explorer window layout.

8-33

slrtexplr

Examples Default

Open Simulink Real-Time Explorer

slrtexplr

8-34

slrtexplr

Related
Examples

• “Ethernet Communication Setup”
• “RS-232 Communication Setup”
• “Target Computer Settings”
• “Target Boot Methods”
• “Execute Target Application Using Simulink Real-Time Explorer”
• “Monitor Signals Using Simulink Real-Time Explorer”
• “Create Target Scopes Using Simulink Real-Time Explorer”
• “Create Host Scopes Using Simulink Real-Time Explorer”
• “Create File Scopes Using Simulink Real-Time Explorer”
• “Tune Parameters Using Simulink Real-Time Explorer”

8-35

slrtgetCC

Purpose Compiler settings for host computer environment

Syntax slrtgetCC
type = slrtgetCC
type = slrtgetCC('Type')
location= slrtgetCC('Location')
[type, location] = slrtgetCC
slrtgetCC('supported')
slrtgetCC('installed')
[compilers] = slrtgetCC('installed')

Description slrtgetCC displays the compiler type and location in the Command
Window.

type = slrtgetCC and type = slrtgetCC('Type') both return the
compiler type in type.

location= slrtgetCC('Location') returns the compiler location in
location.

The mex -setup command sets the default compiler for Simulink
Real-Time builds, provided the MEX compiler is a supported Microsoft
compiler. slrtgetCC returns the result of the slrtsetCC command
only, not the result of the mex command. If slrtgetCC returns an empty
string as location, Simulink Real-Time is using the MEX compiler.

[type, location] = slrtgetCC returns the compiler type and its
location in type and location.

slrtgetCC('supported') displays the compiler versions supported by
the Simulink Real-Time environment.

slrtgetCC('installed') displays the supported compilers installed
on the host computer.

8-36

slrtgetCC

[compilers] = slrtgetCC('installed') returns in a structure the
supported compilers installed on the host computer.

Output
Arguments

type - Type of compiler
VisualC

Simulink Real-Time supports the Microsoft Visual Studio C compiler
only.

location - Folder path to compiler on host computer
string

compilers - Array of structures containing compiler type, name,
and location
array of structures

Examples Display compiler type and location

slrtgetCC

Compiler Settings:

Type = VisualC
Location = C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return compiler type

type = slrtgetCC('Type')

type =

VisualC

Return compiler location

location= slrtgetCC('Location')

location =

8-37

slrtgetCC

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return compiler type and location

[type, location] = slrtgetCC

type =

VisualC

location =

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Display supported compilers

slrtgetCC('supported')

List of C++ Compilers supported by Simulink Real-Time:

Name Version Service
Packs

Microsoft Visual C++ Compilers 2008 9.0 1
Microsoft Visual C++ Compilers 2010 10.0 1
Microsoft Visual C++ Compilers 2012 11.0
Microsoft Visual C++ Compilers (Windows SDK) 2010 10.0 1

Display supported compilers installed

slrtgetCC('installed')

List of installed C++ Compilers:

Name: Microsoft Visual C++ Compilers 2008 Professional Edition
(SP1)

Location: c:\Program Files (x86)\Microsoft Visual Studio 9.0

Name: Microsoft Visual C++ Compilers 2010 Professional

8-38

slrtgetCC

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return supported compilers installed

[compilers] = slrtgetCC('installed')
compilers(1)

compilers =

1x2 struct array with fields:

Type
Name
Location

ans =

Type: 'VisualC'
Name: 'Microsoft Visual C++ Compilers 2008 Professional

Edition (SP1)'
Location: 'c:\Program Files (x86)\Microsoft Visual Studio 9.0'

See Also slrtsetCC | mex

External
Web Sites

• http://www.mathworks.com/support/compilers/current_release/

8-39

http://www.mathworks.com/support/compilers/current_release/

slrtpingtarget

Purpose Test communication between host and target computers

Syntax slrtpingtarget

slrtpingtarget target_computer_name

Description Returns success if the Simulink Real-Time kernel is loaded and
running, and communication is working between the host and target
computers. Otherwise, returns failed.

slrtpingtarget without an argument returns success if the host
computer and the default target computer can communicate using the
settings for that target computer. Otherwise, returns failed.

slrtpingtarget target_computer_name returns success if
the host computer can communicate with target computer
target_computer_name using the settings for that target computer.
Otherwise, returns failed.

Input
Arguments

target_computer_name - Name of specific target computer
TargetPC1 | TargetPC2 | ...

Name property of a particular target computer environment object.
The default name is TargetPC1.

When using function form, enclose the argument in single quotes
('TargetPC1').

Example: TargetPC1

Data Types
char

Examples Check communication with default target computer

slrtpingtarget

8-40

slrtpingtarget

Check communication with specified target computer

slrtpingtarget TargetPC1

8-41

slrtsetCC

Purpose Compiler settings for host computer environment

Syntax slrtsetCC('setup')
slrtsetCC('type','location')

Description slrtsetCC('setup') queries the host computer for installed C
compilers supported by the Simulink Real-Time environment. You can
then select the C compiler.

The command mex -setup sets the default compiler for Simulink
Real-Time builds, provided the MEX compiler is a supported Microsoft
compiler. Use slrtsetCC('setup') only if you must specify different
compilers for MEX and Simulink Real-Time.

slrtsetCC('type','location') sets the compiler type and location.

To return to the default MEX compiler from a setting by slrtsetCC,
type slrtsetCC('VisualC',''), setting the compiler location to the
empty string.

Input
Arguments

type - Type of compiler
VisualC (default)

type must be VisualC, representing the Microsoft Visual Studio C
compiler.

Example: 'VisualC'

Data Types
char

location - Folder path to compiler on host computer
string

Data Types
char

8-42

slrtsetCC

Examples Compiler selection

slrtsetCC('setup')

Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1)
in c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional
in C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:2

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?y

Done...

Compiler specification

slrtsetCC('VisualC',
'C:\Program Files (x86)\Microsoft Visual Studio 10.0')

See Also slrtgetCC | mex

External
Web Sites

• http://www.mathworks.com/support/compilers/current_release/

8-43

http://www.mathworks.com/support/compilers/current_release/

slrttest

Purpose Test Simulink Real-Time installation

Syntax slrttest
slrttest('noreboot')
slrttest(target_name, ___)

Description slrttest is a confidence test that checks the following tasks:

• Initiate communication between the host and target computers.

• Restart the target computer to reset the target environment.

• Build a target application on the host computer.

• Download a target application to the target computer.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Compare the results of a simulation and the target application run.

slrttest('noreboot') skips the restart test on the default target
computer. Use this option if the target hardware does not support
software restart.

slrttest(target_name, ___) runs the tests on the target computer
identified by target_name.

Input
Arguments

target_name - Specifies target name
string

The target name string is case sensitive.

Example: 'TargetPC1'

8-44

slrttest

Examples Test default target computer

Target computer must be running and physically connected to the
host computer.

slrttest

Test default target computer, skipping reboot test

Target computer must be running and physically connected to the
host computer.

slrttest('noreboot')

Test specified target computer, skipping reboot test

Target computer must be running and physically connected to the
host computer.

slrttest('TargetPC1','noreboot')

Concepts • “Troubleshooting in Simulink Real-Time”

8-45

SimulinkRealTime.addTarget

Purpose Add new Simulink Real-Time target object

Syntax env_object.Add

Description SimulinkRealTime.addTarget is a package method of
SimulinkRealTime. It creates an object on the host computer that
represent the target computer.

Examples Add a new Simulink Real-Time target object (tgs) to the system. The
get(tgs) function calls return the number of target computers before
and after you add a target computer.

tgs=SimulinkRealTime.target;

get(tgs);

tgs.Add;

get(tgs);

See Also SimulinkRealTime.targetSettings.set |
SimulinkRealTime.targetSettings.get

8-46

SimulinkRealTime.copyFileToHost

Purpose Copy file from target computer to host computer

Syntax SimulinkRealTime.copyFileToHost(file_name)
SimulinkRealTime.copyFileToHost(target_obj,file_name)

Description SimulinkRealTime.copyFileToHost(file_name) copies file file_name
from the default target computer to the host computer.

SimulinkRealTime.copyFileToHost(target_obj,file_name) copies
file file_name from the target computer represented by target_obj to
the host computer.

Input
Arguments

target_obj - Name of a target computer or a variable containing
a target computer object
string | object

If the argument is a string, it must be the name assigned to a previously
configured target computer.

If the argument is a variable containing an object, it must be a
SimulinkRealTime.target object representing a previously configured
target computer.

Example: `TargetPC1'

Example: tg

Data Types
char | struct

file_name - Name of a file on the target computer
file name string | full path name string

If the argument is a file name, the file must be in the current
folder on the target computer, as indicated by the function
SimulinkFileSystem.pwd.

The file is transferred from the target and written with the same file
name to the current folder on the host computer.

8-47

SimulinkRealTime.copyFileToHost

Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types
char

Examples Copy File by Name from Default Target Computer

Copy file from current folder on default target computer.

SimulinkRealTime.copyFileToHost('data.dat')

Copy File by Full Path from Specified Target Computer

Copy file from full path location on target computer TargetPC1.

tg = slrt('TargetPC1');
SimulinkRealTime.copyFileToHost(tg,'c:\xpcosc\data1.dat')

See Also SimulinkRealTime.copyFileToTarget
| SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir |
SimulinkRealTime.fileSystem.pwd

8-48

SimulinkRealTime.copyFileToTarget

Purpose Copy file from host computer to target computer

Syntax SimulinkRealTime.copyFileToTarget(file_name)
SimulinkRealTime.copyFileToTarget(target_obj,file_name)

Description SimulinkRealTime.copyFileToTarget(file_name) copies file
file_name from the host computer to the default target computer.

SimulinkRealTime.copyFileToTarget(target_obj,file_name)
copies file file_name from the host computer to the target computer
represented by target_obj.

Input
Arguments

target_obj - Name of a target computer or a variable containing
a target computer object
string | object

If the argument is a string, the string must contain the name assigned
to a previously configured target computer.

If the argument is a variable containing an object, the object must be a
SimulinkRealTime.target object representing a previously configured
target computer.

Example: `TargetPC1'

Example: tg

Data Types
char | struct

file_name - Name of a file in the current folder on the host
computer
file name string | full path name string

The file being copied must exist in the current folder on the host
computer.

8-49

SimulinkRealTime.copyFileToTarget

If the argument is a file name, the file is copied to the current
folder on the target computer, as indicated by the function
SimulinkFileSystem.pwd.

If the argument is a path name, the file portion of the path name is
extracted as the host computer file name. The file is copied to the
location indicated by the path name. The folder must exist on the target
computer.

Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types
char

Examples Copy File to Default Target Computer Top Folder

Copy file from current folder on host computer to top folder on default
target computer.

SimulinkRealTime.copyFileToTarget('data.dat')

Copy File to Specified Target Computer by Full Path

Copy file from current folder on host computer to full path location on
target computer TargetPC1.

tg = slrt('TargetPC1');
SimulinkRealTime.copyFileToTarget(tg,'c:\xpcosc\data1.dat')

See Also SimulinkRealTime.copyFileToHost |
SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir |
SimulinkRealTime.fileSystem.pwd

8-50

SimulinkRealTime.createBootImage

Purpose Create Simulink Real-Time boot disk or DOS Loader files

Syntax SimulinkRealTime.createBootImage
SimulinkRealTime.createBootImage(target_object)

Description SimulinkRealTime.createBootImage creates a boot image for the
default target computer in the form of a boot floppy disk, a boot CD or
DVD, a network boot image, or DOS Loader kernel image files.

SimulinkRealTime.createBootImage(target_object)creates a boot
image for the target computer indicated by target_object, which can
be the name of a target computer or a variable containing a target object.

The form of the boot image depends upon the value of the TargetBoot
environment property.

• BootFloppy — To create a boot floppy disk, the software prompts
you to insert an empty formatted disk into the drive. The software
writes the kernel image onto the disk and displays a summary of
the creation process.

• CDBoot — To create a CD or DVD boot disk, the software prompts
you to insert an empty formatted CD or DVD into the drive. The
software writes the kernel image onto the CD or DVD and displays a
summary of the creation process.

• NetworkBoot— To create a network boot image, the software starts
the network boot server process.

• DOSLoader— To create DOS Loader files, the software writes kernel
image and DOS Loader files into a designated location on the host
computer. You can then copy the files to the target computer hard
drive, to a floppy disk, or to a flash drive.

• StandAlone— To create files for a standalone application, you must
separately compile and download a combined kernel and target
application. SimulinkRealTime.createBootImage does not generate
a standalone application.

Use SimulinkRealTime.targetSettings.set to update the
environment properties. If you update the environment,

8-51

SimulinkRealTime.createBootImage

you must update the boot image with the function
SimulinkRealTime.createBootImage.

Examples To create a boot image for the default target computer, in the Command
Window, type:

SimulinkRealTime.createBootImage

To create a boot image for the target computer TargetPC1, type:

SimulinkRealTime.createBootImage('TargetPC1')

To create a boot image for target computer object target_object, type:

target_object = SimulinkRealTime.addTarget('TargetPC2');
SimulinkRealTime.createBootImage(target_object)

See Also SimulinkRealTime.targetSettings.set |
SimulinkRealTime.getTargetSettings

How To • “Target Boot Methods”

• “Command-Line Target Boot Methods”

8-52

SimulinkRealTime.getSupportInfo

Purpose Diagnostic information to troubleshoot configuration issues

Syntax SimulinkRealTime.getSupportInfo
SimulinkRealTime.getSupportInfo('-a')

Arguments '-a' Appends diagnostic information to an
existing slrtinfo.txt file. If this file does
not exist, this function creates the file in
the current folder. Enter the argument as
a string.

Description SimulinkRealTime.getSupportInfo returns diagnostic information for
troubleshooting Simulink Real-Time configuration issues. This function
generates and saves the information in the slrtinfo.txt file, in the
current folder. If the file slrtinfo.txt already exists, this function
overwrites it with the new information.

SimulinkRealTime.getSupportInfo('-a') appends the diagnostic
information to the slrtinfo.txt file, in the current folder. If the file
slrtinfo.txt does not exist, this function creates it.

You can send the file slrtinfo.txt to MathWorks support for
evaluation and guidance. To create this file, you must have write
permission for the current folder.

Caution

The file slrtinfo.txt can contain information sensitive to your
organization. Before sending this file to MathWorks, review the
contents.

8-53

SimulinkRealTime.getTargetSettings

Purpose Display specific target computer environment object

Syntax SimulinkRealTime.getTargetSettings
SimulinkRealTime.getTargetSettings(env_object_name)
env = SimulinkRealTime.getTargetSettings(___)

Description SimulinkRealTime.getTargetSettings displays the environment
object representing the default computer.

SimulinkRealTime.getTargetSettings(env_object_name) displays
the environment object representing a particular target computer.

env = SimulinkRealTime.getTargetSettings(___)
returns the environment object representing the
target computer. Access the environment properties
using the SimulinkRealTime.targetSettings.get and
SimulinkRealTime.targetSettings.set functions.

Examples Display the default target environment object.

SimulinkRealTime.getTargetSettings

Simulink Real-Time Target Settings

Name : TargetPC1

TargetRAMSizeMB : Auto

MaxModelSize : 1MB

SecondaryIDE : off

NonPentiumSupport : off

MulticoreSupport : on

LegacyMultiCoreConfig : off

USBSupport : on

ShowHardware : off

EthernetIndex : 0

HostTargetComm : TcpIp

TcpIpTargetAddress : 10.10.10.15

8-54

SimulinkRealTime.getTargetSettings

TcpIpTargetPort : 22222

TcpIpSubNetMask : 255.255.255.0

TcpIpGateway : 10.10.10.100

RS232HostPort : COM1

RS232Baudrate : 115200

TcpIpTargetDriver : Auto

TcpIpTargetBusType : PCI

TcpIpTargetISAMemPort : 0x300

TcpIpTargetISAIRQ : 5

TargetScope : Enabled

TargetBoot : NetworkBoot

TargetMACAddress : 90:e2:ba:17:5d:15

Retrieve a target environment object for a specific target computer.
Use it to access a property.

env = SimulinkRealTime.getTargetSettings('TargetPC1');

env.get('HostTargetComm')

See Also SimulinkRealTime.targetSettings.set |
SimulinkRealTime.targetSettings.get

8-55

SimulinkRealTime.pingTarget

Purpose Test communication between host and target computers

Syntax SimulinkRealTime.pingTarget

SimulinkRealTime.pingTarget(target_computer_name)

Description Returns success if the Simulink Real-Time kernel is loaded and
running, and communication is working between the host and target
computers. Otherwise, returns failed.

SimulinkRealTime.pingTarget without an argument returns success
if the host computer and the default target computer can communicate
using the settings for the default computer. Otherwise, returns failed.

SimulinkRealTime.pingTarget(target_computer_name) returns
success if the host computer can communicate with target computer
target_computer_name using the settings for target computer
target_computer_name. Otherwise, returns failed.

Enclose the argument in single quotes ('TargetPC1').

Input
Arguments

target_computer_name - Name of specific target computer
'TargetPC1' | 'TargetPC2' | ...

Name property of a particular target computer environment object.
The default name is 'TargetPC1'.

Example: TargetPC1

Data Types
char

Examples Check communication with default target computer

SimulinkRealTime.pingTarget

8-56

SimulinkRealTime.pingTarget

Check communication with specified target computer

SimulinkRealTime.pingTarget('TargetPC1')

8-57

SimulinkRealTime.removeTarget

Purpose Remove environment data associated with target name

Syntax SimulinkRealTime.removeTarget('target_name')

Description Method of package SimulinkRealTime .
SimulinkRealTime.removeTarget removes the definitions and settings
for the indicated target from the system, invalidating the target
objects associated with that target. If you remove the environment
data for the default target computer, the next target object becomes
the default target computer. Do not remove the environment data
for the last target computer.

Examples Remove the environment data for 'TargetPC2' from the system.

SimulinkRealTime.removeTarget('TargetPC2')

See Also SimulinkRealTime.addTarget |
SimulinkRealTime.targetSettings.set |
SimulinkRealTime.targetSettings.get

8-58

SimulinkRealTime.utils.bytes2file

Purpose Generate file for use by real-time From File block

Syntax SimulinkRealTime.utils.bytes2file(filename,var1,. . .,varn)

Arguments
filename Name of the data file from which the real-time

From File block distributes data.

var1,. .
.,varn

Column of data to be output to the model.

Description SimulinkRealTime.utils.bytes2file(filename,var1,. .
.,varn) outputs one column of var1, . . .,varn from file filename
at every time step. All variables must have the same number of
columns. The number of rows and the data types can be different.

Note If the data is organized so that a row, not a column,
refers to a time step, pass the transpose of the variable to
SimulinkRealTime.utils.bytes2file. To optimize file writes,
organize the data in columns.

Examples To use the real-time From File block to output a variable errorval
(single precision, scalar) and velocity (double, width 3) at every time
step, you can generate the file with the command:

SimulinkRealTime.utils.bytes2file('myfile', errorval, velocity)

errorval has class 'single' and dimensions [1 x N] and velocity
has class 'double' and dimensions [3 x N].

At every sample time, set up the real-time From File block to output:

28 bytes
(1 * sizeof('single') + 3 * sizeof('double'))

8-59

SimulinkRealTime.utils.createInstrumentationModel

Purpose Construct skeleton for user interface model

Syntax SimulinkRealTime.utils.createInstrumentationModel(system_name)

Description SimulinkRealTime.utils.createInstrumentationModel(system_name)
generates a skeleton Simulink instrumentation model containing To
Target and From Target blocks. The model is based on tagged block
parameters and tagged signals defined in the Simulink Real-Time
model used to build the target application.

Input
Arguments

system_name - Name of system for which to create an interface
model
'xpcosc'

Model must contain tagged signals or block parameters.

Data Types
char

Examples Generate an interface model

SimulinkRealTime.utils.createInstrumentationModel('xpcosc')

8-60

SimulinkRealTime.utils.getFileScopeData

Purpose Read real-time Scope file format data

Syntax matlab_data =
SimulinkRealTime.utils.getFileScopeData(slrtfile_name

)
matlab_data =
SimulinkRealTime.utils.getFileScopeData(slrtfile_data

)

Description matlab_data =
SimulinkRealTime.utils.getFileScopeData(slrtfile_name)
takes as an argument the name of a host computer file
containing a vector of byte data (uint8). Before using this
function, copy the file from the target computer using the
SimulinkRealTime.copyFileToHost method.

matlab_data =
SimulinkRealTime.utils.getFileScopeData(slrtfile_data) takes
as an argument a MATLAB variable containing a vector of byte data
(uint8). Before using this function, copy the data from the target
computer using the SimulinkRealTime.fileSystem.fread method.

Input
Arguments

slrtfile_name - Name of file from which to read real-time Scope
file format data
'data.dat'

File must contain a vector of uint8 data.

Data Types
char

slrtfile_data - Workspace variable containing real-time Scope
file format data
vector

Data Types
uint8

8-61

SimulinkRealTime.utils.getFileScopeData

Output
Arguments

matlab_data - State and time data for plotting
structure

The state and time data is stored in a structure containing six fields.
The key fields are numSignals, data, and signalNames.

version - Version code
0 (default) | double

Internal

sector - Sector of data file
0 (default) | double

Internal

headersize - Number of bytes of data file header
512 (default) | double

Internal

numSignals - Number of columns containing signal and time
data
double

If N signals are connected to the real-time Scope block, numSignals =
N + 1.

data - Columns containing signal and time data
double array

The data array contains numSignals columns. The first N columns
represent signal state data. The last column contains the time at which
the state data is captured.

The data array contains as many rows as there are data points.

signalNames - Names of columns containing signal and time
data
cell vector

8-62

SimulinkRealTime.utils.getFileScopeData

The signalNames vector contains numSignals elements. The first N
elements are signal names. The last element is the string Time.

Examples These examples access a file on a target computer using different
methods and plot the results. The model includes one scalar signal
connected to a real-time Scope block of type File. The model has been
built, downloaded, and run, producing file 'data.dat' on the target
computer.

Using slrtfile_name argument to read file and plot results

Upload the file using SimulinkRealTime.fileSystem methods. Read
the file on the host using SimulinkRealTime.utils.getFileScopeData.
Plot the results.

Upload file 'data.dat' from the target computer.

fs = SimulinkRealTime.fileSystem;
fs.copyFileToHost('data.dat');

Read the file and process its data into MATLAB format.

matlab_data =
SimulinkRealTime.utils.getFileScopeData('data.dat');

Plot the signal data (column 1) on the Y axis against time (column 2) on
the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1));
xlabel(matlab_data.signalNames(2));
ylabel(matlab_data.signalNames(1));

Using slrtfile_data argument to store data, convert data to
MATLAB format, and plot results

Read the file on the target computer using
SimulinkRealTime.fileSystem methods. Store the data in a
workspace variable. Convert the data to MATLAB format using
SimulinkRealTime.utils.getFileScopeData. Plot the results.

8-63

SimulinkRealTime.utils.getFileScopeData

Read file 'data.dat' from the target computer.

fs = SimulinkRealTime.fileSystem;
h=fs.fopen('data.dat');
slrtfile_data=fs.fread(h);
fs.fclose(h);

Process data from the workspace variable into MATLAB format.

matlab_data =
SimulinkRealTime.utils.getFileScopeData(slrtfile_data);

Plot the signal data (column 1) on the Y axis against time (column 2) on
the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1));
xlabel(matlab_data.signalNames(2));
ylabel(matlab_data.signalNames(1));

See Also Scope | SimulinkRealTime.fileSystem

8-64

SimulinkRealTime.targetSettings

Purpose Store target environment properties

Description Methods

Method Description

SimulinkRealTime.targetSettings.getReturn property values for an environment object

SimulinkRealTime.targetSettings.setChange property values for an environment object

8-65

SimulinkRealTime.targetSettings

Properties

The environment properties define communication between the host
computer and target computer and the type of target boot image
created during the setup process. An understanding of the environment
properties helps you configure the Simulink Real-Time environment.

To access target environment properties from the Command
Window, use SimulinkRealTime.targetSettings.get and
SimulinkRealTime.targetSettings.set.

To access the environment properties in Simulink Real-Time Explorer:

1 In the Targets pane, expand a target computer node.

2 In the toolbar, click the Target Properties icon .

3 Expand the sections Host-to-Target communication, Target
settings, or Boot configuration.

The environment properties for a target environment object are listed
in the following tables.

• Host-to-Target communication on page 66

• Target settings on page 72

• Boot configuration on page 76

Host-to-Target communication
Environment Property Description

HostTargetComm MATLAB property values are
'RS232' and 'TcpIp'.

From the Simulink Real-Time
Explorer Communication type
list, select one of RS-232 or
TCP/IP.

If you select RS-232, youmust also
set the property RS232HostPort.

8-66

SimulinkRealTime.targetSettings

Environment Property Description

If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate MATLAB property values are
'115200', '57600', '38400',
'19200', '9600', '4800’, '2400',
and '1200'.

From the Simulink Real-Time
Explorer Baud rate list, select
one of 1200, 2400, 4800, 9600,
19200, 38400, 57600, or 115200.

RS232HostPort MATLAB property values are
'COM1' and 'COM2'.

From the Simulink Real-Time
Explorer Host port list, select
one of COM1 or COM2. The software
determines the COM port on the
target computer.

Before you can select an
RS-232 port, you must set the
HostTargetComm property to
RS232.

8-67

SimulinkRealTime.targetSettings

Environment Property Description

TcpIpGateway MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Gateway box, type the
IP address for your gateway.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need
to change this property. Consult
your system administrator for
this value.

TcpIpSubNetMask MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Subnet mask box,
type the subnet mask of your
LAN. Consult your system
administrator for this value.

For example, 255.255.255.0.

8-68

SimulinkRealTime.targetSettings

Environment Property Description

TcpIpTargetAddress MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer IP address box, type a
valid IP address for your target
computer. Consult your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType MATLAB property values are
'PCI', 'ISA', and 'USB'.

From the Simulink Real-Time
Explorer Bus type list, select
one of PCI, ISA, or USB. This
property is set by default to PCI.
It determines the bus type of your
target computer. You do not need
to define a bus type for your host
computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ are not used
for TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

8-69

SimulinkRealTime.targetSettings

Environment Property Description

TcpIpTargetDriver MATLAB property values are
'3C90x', 'I8254x', 'I82559',
'NE2000', 'NS83815', 'R8139',
'R8168', 'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

From the Simulink Real-Time
Explorer Target driver list,
select one of THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto.

TcpIpTargetISAIRQ MATLAB property value is 'n'. n
is between 5 and 15 inclusive.

From the Simulink Real-Time
Explorer IRQ list, select an IRQ
value.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper or ROM settings on the
ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target

8-70

SimulinkRealTime.targetSettings

Environment Property Description

computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort MATLAB property value is
'0xnnnn'.

In the Simulink Real-Time
Explorer Address box, type an
I/O port base address.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to a value near 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort MATLAB property value is
'xxxxx'.

In the Simulink Real-Time
Explorer Port box, type a port
address greater than 20000.

8-71

SimulinkRealTime.targetSettings

Environment Property Description

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is used
only on the target computer.

Target settings
Environment Property Description

EthernetIndex MATLAB property value is 'n'. 'n' indicates the index
number for the Ethernet card on a target computer. The
(n-1)th Ethernet card on the target computer has an
index number 'n'. The default index number is '0'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
starting.

LegacyMultiCoreConfig MATLAB property values are 'on' and 'off'. The
default value is 'off'.

There is no corresponding Simulink Real-Time Explorer
interface element.

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

8-72

SimulinkRealTime.targetSettings

Environment Property Description

MaxModelSize Supported MATLAB property values are '1MB' and
'4MB'. The default value is '1MB'. Value '16MB' is not
supported.

From the Simulink Real-Time ExplorerModel size list,
select one of 1 MB or 4 MB.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximummodel size reserves the specified
amount of memory on the target computer for the target
application. Memory not used by the target application
is used by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has multicore processors, select
the Simulink Real-Time Explorer Multicore CPU
check box to take advantage of these processors for
background tasks. Otherwise, clear it.

Name MATLAB property is the target computer name string.

To rename the target computer in Simulink Real-Time
Explorer, right-click the target computer node in the
MATLAB Session tree, click Rename, and type the
new name in the Target environment name box.

8-73

SimulinkRealTime.targetSettings

Environment Property Description

NonPentiumSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has a 386 or 486 compatible
processor, select the Simulink Real-Time Explorer
Target is a 386/486 check box. Otherwise, clear
it. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If you want to use the disks connected to a secondary
IDE controller, select the Simulink Real-Time Explorer
Secondary IDE check box. Otherwise, clear it.

ShowHardware MATLAB property values are 'on' and 'off'. The
default value is 'off'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If you create a target boot kernel when ShowHardware is
'on' and start the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel starts with ShowHardware set.

8-74

SimulinkRealTime.targetSettings

Environment Property Description

TargetRAMSizeMB MATLAB property values are 'Auto' and 'xxx'. xxx
is a positive value specifying the total amount of RAM,
in megabytes, installed on the target computer. Target
computer RAM is used for the kernel, target application,
data logging, and other functions that use the heap. The
default value is 'Auto'.

To allow the target application to read the target
computer BIOS and determine the amount of memory
up to a maximum of 2 GB, in Simulink Real-Time
Explorer, click RAM size Auto. If the target application
cannot read the BIOS, click Manual and type into
the Size(MB) box the amount of RAM, in megabytes,
installed on the target computer.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope MATLAB property values are 'Disabled' and
'Enabled'. The default value is 'Enabled'.

To display scope information graphically, set the
Simulink Real-Time Explorer Graphics mode check
box.

To display scope information as text, clear theGraphics
mode check box.

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport MATLAB property values are 'on' and 'off'. The
default value is 'on'.

To use a USB port on the target computer, for example
to connect a USB mouse, select the Simulink Real-Time
Explorer USB Support check box. Otherwise, clear it.

8-75

SimulinkRealTime.targetSettings

Boot configuration
Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOS Loader files
to start target computers from
devices other than floppy disk or
CD.

TargetBoot MATLAB property values
are 'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

To specify a boot mode, from the
Simulink Real-Time Explorer
Boot mode list, select one
of Removable Disk, CD, DOS
Loader, Network, or Stand
Alone.

To create a bootable image for the
specified boot mode, click Create
boot disk.

TargetMACAddress MATLAB property value is the
physical target computer MAC
address from which to accept
start requests when starting
within a dedicated network.
Format the MAC address as six
pairs of hexadecimal numbers,
separated by colons:

xx:xx:xx:xx:xx:xx

To update the MAC address in
Simulink Real-Time Explorer,

8-76

SimulinkRealTime.targetSettings

Environment Property Description

first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

8-77

SimulinkRealTime.targetSettings.get

Purpose Value of target environment property

Syntax property_value = env_object.property_name
property_value = env_object.get('property_name')
property_value = get(env_object,'property_name')
property_value = env_object.get
property_value = get(env_object)

Arguments env_object Name of a target environment object.

property_name Name of a target environment object property.

Description property_value = env_object.property_name gets the current value
of property property_name from target environment object env_object.
Alternative syntaxes are:

property_value = env_object.get('property_name')

property_value = get(env_object,'property_name')

property_value = env_object.get gets the values of all properties of
target environment object env_object. An alternative syntax is:

property_value = get(env_object)

Get an individual environment object with the
SimulinkRealTime.getTargetSettings method. For example:

tgs=SimulinkRealTime.target;
env_object=tgs.Item('TargetPC1');
property_value=env_object.HostTargetComm

To access the environment properties in Simulink Real-Time Explorer:

1 In the Targets pane, expand a target computer node.

2 In the toolbar, click the Target Properties icon .

8-78

SimulinkRealTime.targetSettings.get

3 Expand the sections Host-to-Target communication, Target
settings, or Boot configuration.

The environment properties for a target environment object are listed
in the following tables.

• “Host-to-Target Communication” on page 8-79

• “Target Settings” on page 8-84

• “Boot Configuration” on page 8-88

Host-to-Target Communication

Environment Property Description

HostTargetComm MATLAB property values are
'RS232' and 'TcpIp'.

From the Simulink Real-Time
Explorer Communication type
list, select one of RS-232 or
TCP/IP.

If you select RS-232, youmust also
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate MATLAB property values are
'115200', '57600', '38400',
'19200', '9600', '4800’, '2400',
and '1200'.

8-79

SimulinkRealTime.targetSettings.get

Environment Property Description

From the Simulink Real-Time
Explorer Baud rate list, select
one of 1200, 2400, 4800, 9600,
19200, 38400, 57600, or 115200.

RS232HostPort MATLAB property values are
'COM1' and 'COM2'.

From the Simulink Real-Time
Explorer Host port list, select
one of COM1 or COM2. The software
determines the COM port on the
target computer.

Before you can select an
RS-232 port, you must set the
HostTargetComm property to
RS232.

TcpIpGateway MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Gateway box, type the
IP address for your gateway.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need

8-80

SimulinkRealTime.targetSettings.get

Environment Property Description

to change this property. Consult
your system administrator for
this value.

TcpIpSubNetMask MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Subnet mask box,
type the subnet mask of your
LAN. Consult your system
administrator for this value.

For example, 255.255.255.0.

TcpIpTargetAddress MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer IP address box, type a
valid IP address for your target
computer. Consult your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType MATLAB property values are
'PCI', 'ISA', and 'USB'.

From the Simulink Real-Time
Explorer Bus type list, select
one of PCI, ISA, or USB. This
property is set by default to PCI.
It determines the bus type of your
target computer. You do not need
to define a bus type for your host
computer.

If TcpIpTargetBusType is set
to PCI, then the properties

8-81

SimulinkRealTime.targetSettings.get

Environment Property Description

TcpIpISAMemPort and
TcpIpISAIRQ are not used
for TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver MATLAB property values are
'3C90x', 'I8254x', 'I82559',
'NE2000', 'NS83815', 'R8139',
'R8168', 'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

From the Simulink Real-Time
Explorer Target driver list,
select one of THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto.

TcpIpTargetISAIRQ MATLAB property value is 'n'. n
is between 5 and 15 inclusive.

From the Simulink Real-Time
Explorer IRQ list, select an IRQ
value.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the

8-82

SimulinkRealTime.targetSettings.get

Environment Property Description

jumper or ROM settings on the
ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

TcpIpTargetISAMemPort MATLAB property value is
'0xnnnn'.

In the Simulink Real-Time
Explorer Address box, type an
I/O port base address.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to a value near 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O

8-83

SimulinkRealTime.targetSettings.get

Environment Property Description

port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort MATLAB property value is
'xxxxx'.

In the Simulink Real-Time
Explorer Port box, type a port
address greater than 20000.

This property is set by default
to 22222. The default value is
higher than the reserved area
(telnet, ftp, . . .) and is used
only on the target computer.

Target Settings

Environment Property Description

EthernetIndex MATLAB property value is 'n'. 'n' indicates the index
number for the Ethernet card on a target computer. The
(n-1)th Ethernet card on the target computer has an
index number 'n'. The default index number is '0'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
starting.

LegacyMultiCoreConfig MATLAB property values are 'on' and 'off'. The
default value is 'off'.

8-84

SimulinkRealTime.targetSettings.get

Environment Property Description

There is no corresponding Simulink Real-Time Explorer
interface element.

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

MaxModelSize Supported MATLAB property values are '1MB' and
'4MB'. The default value is '1MB'. Value '16MB' is not
supported.

From the Simulink Real-Time ExplorerModel size list,
select one of 1 MB or 4 MB.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximummodel size reserves the specified
amount of memory on the target computer for the target
application. Memory not used by the target application
is used by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has multicore processors, select
the Simulink Real-Time Explorer Multicore CPU
check box to take advantage of these processors for
background tasks. Otherwise, clear it.

8-85

SimulinkRealTime.targetSettings.get

Environment Property Description

Name MATLAB property is the target computer name string.

To rename the target computer in Simulink Real-Time
Explorer, right-click the target computer node in the
MATLAB Session tree, click Rename, and type the
new name in the Target environment name box.

NonPentiumSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has a 386 or 486 compatible
processor, select the Simulink Real-Time Explorer
Target is a 386/486 check box. Otherwise, clear
it. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If you want to use the disks connected to a secondary
IDE controller, select the Simulink Real-Time Explorer
Secondary IDE check box. Otherwise, clear it.

ShowHardware MATLAB property values are 'on' and 'off'. The
default value is 'off'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If you create a target boot kernel when ShowHardware is
'on' and start the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel starts with ShowHardware set.

8-86

SimulinkRealTime.targetSettings.get

Environment Property Description

TargetRAMSizeMB MATLAB property values are 'Auto' and 'xxx'. xxx
is a positive value specifying the total amount of RAM,
in megabytes, installed on the target computer. Target
computer RAM is used for the kernel, target application,
data logging, and other functions that use the heap. The
default value is 'Auto'.

To allow the target application to read the target
computer BIOS and determine the amount of memory
up to a maximum of 2 GB, in Simulink Real-Time
Explorer, click RAM size Auto. If the target application
cannot read the BIOS, click Manual and type into
the Size(MB) box the amount of RAM, in megabytes,
installed on the target computer.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope MATLAB property values are 'Disabled' and
'Enabled'. The default value is 'Enabled'.

To display scope information graphically, set the
Simulink Real-Time Explorer Graphics mode check
box.

To display scope information as text, clear theGraphics
mode check box.

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport MATLAB property values are 'on' and 'off'. The
default value is 'on'.

To use a USB port on the target computer, for example
to connect a USB mouse, select the Simulink Real-Time
Explorer USB Support check box. Otherwise, clear it.

8-87

SimulinkRealTime.targetSettings.get

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOS Loader files
to start target computers from
devices other than floppy disk or
CD.

TargetBoot MATLAB property values
are 'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

To specify a boot mode, from the
Simulink Real-Time Explorer
Boot mode list, select one
of Removable Disk, CD, DOS
Loader, Network, or Stand
Alone.

To create a bootable image for the
specified boot mode, click Create
boot disk.

TargetMACAddress MATLAB property value is the
physical target computer MAC
address from which to accept
start requests when starting
within a dedicated network.
Format the MAC address as six
pairs of hexadecimal numbers,
separated by colons:

xx:xx:xx:xx:xx:xx

8-88

SimulinkRealTime.targetSettings.get

Environment Property Description

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

See Also SimulinkRealTime.targetSettings.set

8-89

SimulinkRealTime.targetSettings.set

Purpose Change target environment object property values

Syntax env_object.property_name = property_value
env_object.set('prop_name1,'prop_value1','prop_name2',. . .)
set(env_object,'prop_name1','prop_value1','prop_name2',. . .)

Arguments env_object Name of a target environment object.

property_name Name of a target environment object property.

property_value Value for a target environment object property.
Always use quotation marks for character
strings. Quotation marks are optional for
numbers.

Description env_object.property_name = property_value sets property
property_name of target environment object env_object to
property_value. Alternative syntaxes for one or more property-value
pairs are:

env_object.set('prop_name1,'prop_value1','prop_name2',. .
.)

set(env_object,'prop_name1','prop_value1','prop_name2',. .
.)

Get an individual environment object with the
SimulinkRealTime.getTargetSettings method. For example:

tgs=SimulinkRealTime.target;
env_object=tgs.Item('TargetPC1');
env_object.HostTargetComm='RS232'

Not all properties are user-writable.

To access the environment properties in Simulink Real-Time Explorer:

1 In the Targets pane, expand a target computer node.

8-90

SimulinkRealTime.targetSettings.set

2 In the toolbar, click the Target Properties icon .

3 Expand the sections Host-to-Target communication, Target
settings, or Boot configuration.

The environment properties for a target environment object are listed
in the following tables.

• “Host-to-Target Communication” on page 8-91

• “Target Settings” on page 8-97

• “Boot Configuration” on page 8-101

Host-to-Target Communication

Environment Property Description

HostTargetComm MATLAB property values are
'RS232' and 'TcpIp'.

From the Simulink Real-Time
Explorer Communication type
list, select one of RS-232 or
TCP/IP.

If you select RS-232, youmust also
set the property RS232HostPort.
If you select TCP/IP, then you
must set the other properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate MATLAB property values are
'115200', '57600', '38400',

8-91

SimulinkRealTime.targetSettings.set

Environment Property Description

'19200', '9600', '4800’, '2400',
and '1200'.

From the Simulink Real-Time
Explorer Baud rate list, select
one of 1200, 2400, 4800, 9600,
19200, 38400, 57600, or 115200.

RS232HostPort MATLAB property values are
'COM1' and 'COM2'.

From the Simulink Real-Time
Explorer Host port list, select
one of COM1 or COM2. The software
determines the COM port on the
target computer.

Before you can select an
RS-232 port, you must set the
HostTargetComm property to
RS232.

TcpIpGateway MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Gateway box, type the
IP address for your gateway.
This property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this

8-92

SimulinkRealTime.targetSettings.set

Environment Property Description

property. If your LAN does not
use gateways, you do not need
to change this property. Consult
your system administrator for
this value.

TcpIpSubNetMask MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer Subnet mask box,
type the subnet mask of your
LAN. Consult your system
administrator for this value.

For example, 255.255.255.0.

TcpIpTargetAddress MATLAB property value is
'xxx.xxx.xxx.xxx'.

In the Simulink Real-Time
Explorer IP address box, type a
valid IP address for your target
computer. Consult your system
administrator for this value.

For example, 192.168.0.10.

8-93

SimulinkRealTime.targetSettings.set

Environment Property Description

TcpIpTargetBusType MATLAB property values are
'PCI', 'ISA', and 'USB'.

From the Simulink Real-Time
Explorer Bus type list, select
one of PCI, ISA, or USB. This
property is set by default to PCI.
It determines the bus type of your
target computer. You do not need
to define a bus type for your host
computer.

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ are not used
for TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values
for TcpIpISAMemPort and
TcpIpISAIRQ.

TcpIpTargetDriver MATLAB property values are
'3C90x', 'I8254x', 'I82559',
'NE2000', 'NS83815', 'R8139',
'R8168', 'Rhine', 'RTLANCE',
'SMC91C9X', 'USBAX772',
'USBAX172', and 'Auto'.

From the Simulink Real-Time
Explorer Target driver list,
select one of THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,

8-94

SimulinkRealTime.targetSettings.set

Environment Property Description

Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto.

TcpIpTargetISAIRQ MATLAB property value is 'n'. n
is between 5 and 15 inclusive.

From the Simulink Real-Time
Explorer IRQ list, select an IRQ
value.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper or ROM settings on the
ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

8-95

SimulinkRealTime.targetSettings.set

Environment Property Description

TcpIpTargetISAMemPort MATLAB property value is
'0xnnnn'.

In the Simulink Real-Time
Explorer Address box, type an
I/O port base address.

If you are using an ISA
bus Ethernet card, you
must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to a value near 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/O
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort MATLAB property value is
'xxxxx'.

In the Simulink Real-Time
Explorer Port box, type a port
address greater than 20000.

This property is set by default
to 22222. The default value is
higher than the reserved area

8-96

SimulinkRealTime.targetSettings.set

Environment Property Description

(telnet, ftp, . . .) and is used
only on the target computer.

Target Settings

Environment Property Description

EthernetIndex MATLAB property value is 'n'. 'n' indicates the index
number for the Ethernet card on a target computer. The
(n-1)th Ethernet card on the target computer has an
index number 'n'. The default index number is '0'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
starting.

LegacyMultiCoreConfig MATLAB property values are 'on' and 'off'. The
default value is 'off'.

There is no corresponding Simulink Real-Time Explorer
interface element.

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

8-97

SimulinkRealTime.targetSettings.set

Environment Property Description

MaxModelSize Supported MATLAB property values are '1MB' and
'4MB'. The default value is '1MB'. Value '16MB' is not
supported.

From the Simulink Real-Time ExplorerModel size list,
select one of 1 MB or 4 MB.

Setting Model size is enabled for Boot mode Stand
Alone only.

Choosing the maximummodel size reserves the specified
amount of memory on the target computer for the target
application. Memory not used by the target application
is used by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

MulticoreSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has multicore processors, select
the Simulink Real-Time Explorer Multicore CPU
check box to take advantage of these processors for
background tasks. Otherwise, clear it.

Name MATLAB property is the target computer name string.

To rename the target computer in Simulink Real-Time
Explorer, right-click the target computer node in the
MATLAB Session tree, click Rename, and type the
new name in the Target environment name box.

8-98

SimulinkRealTime.targetSettings.set

Environment Property Description

NonPentiumSupport MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If your target computer has a 386 or 486 compatible
processor, select the Simulink Real-Time Explorer
Target is a 386/486 check box. Otherwise, clear
it. If your target computer has a Pentium or higher
compatible processor, selecting this check box slows the
performance of your target computer.

SecondaryIDE MATLAB property values are 'on' and 'off'. The
default value is 'off'.

If you want to use the disks connected to a secondary
IDE controller, select the Simulink Real-Time Explorer
Secondary IDE check box. Otherwise, clear it.

ShowHardware MATLAB property values are 'on' and 'off'. The
default value is 'off'.

There is no corresponding Simulink Real-Time Explorer
interface element.

If you create a target boot kernel when ShowHardware is
'on' and start the target computer with it, the kernel
displays the index, bus, slot, function, and target driver
for each Ethernet card on the target monitor.

The host computer cannot communicate with the target
computer after the kernel starts with ShowHardware set.

8-99

SimulinkRealTime.targetSettings.set

Environment Property Description

TargetRAMSizeMB MATLAB property values are 'Auto' and 'xxx'. xxx
is a positive value specifying the total amount of RAM,
in megabytes, installed on the target computer. Target
computer RAM is used for the kernel, target application,
data logging, and other functions that use the heap. The
default value is 'Auto'.

To allow the target application to read the target
computer BIOS and determine the amount of memory
up to a maximum of 2 GB, in Simulink Real-Time
Explorer, click RAM size Auto. If the target application
cannot read the BIOS, click Manual and type into
the Size(MB) box the amount of RAM, in megabytes,
installed on the target computer.

The Simulink Real-Time kernel can use only 2 GB of
memory.

TargetScope MATLAB property values are 'Disabled' and
'Enabled'. The default value is 'Enabled'.

To display scope information graphically, set the
Simulink Real-Time Explorer Graphics mode check
box.

To display scope information as text, clear theGraphics
mode check box.

To use the full features of a target scope, install a
keyboard on the target computer.

USBSupport MATLAB property values are 'on' and 'off'. The
default value is 'on'.

To use a USB port on the target computer, for example
to connect a USB mouse, select the Simulink Real-Time
Explorer USB Support check box. Otherwise, clear it.

8-100

SimulinkRealTime.targetSettings.set

Boot Configuration

Environment Property Description

BootFloppyLocation Drive name for creation of target
boot disk.

DOSLoaderLocation Location of DOS Loader files
to start target computers from
devices other than floppy disk or
CD.

TargetBoot MATLAB property values
are 'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot',
and 'StandAlone'.

To specify a boot mode, from the
Simulink Real-Time Explorer
Boot mode list, select one
of Removable Disk, CD, DOS
Loader, Network, or Stand
Alone.

To create a bootable image for the
specified boot mode, click Create
boot disk.

TargetMACAddress MATLAB property value is the
physical target computer MAC
address from which to accept
start requests when starting
within a dedicated network.
Format the MAC address as six
pairs of hexadecimal numbers,
separated by colons:

xx:xx:xx:xx:xx:xx

8-101

SimulinkRealTime.targetSettings.set

Environment Property Description

To update the MAC address in
Simulink Real-Time Explorer,
first click the Reset button in the
Target Properties pane. You
can then click the Specify new
MAC address button to enter
a MAC address manually in the
MAC address box. If you do not
enter a MAC address manually,
the software will obtain the
MAC address automatically the
next time you restart the target
computer.

See Also SimulinkRealTime.targetSettings.get

8-102

SimulinkRealTime.targetSettings.setAsDefaultTarget

Purpose Set specific target computer environment object as default

Syntax env_object.setAsDefaultTarget

Description Method of SimulinkRealTime.target objects. makeDefault sets the
specified target computer environment object as the default target
computer from the SimulinkRealTime.target class.

Examples Set the specified target as the default target computer.

tgs=SimulinkRealTime.getTargetSettings('TargetPC1');

tgs.setAsDefaultTarget

See Also SimulinkRealTime.targetSettings.set |
SimulinkRealTime.targetSettings.get

8-103

SimulinkRealTime.fileSystem

Purpose Manage folders and files on target computer

Description This class implements folder and file access methods used on the target
computer.

Constructor

Constructor Description

SimulinkRealTime.fileSystem
(constructor)

Create file system object

Methods

These methods are specific to class SimulinkRealTime.fileSystem.

Method Description

SimulinkRealTime.fileSystem.cdChange folder on target computer

SimulinkRealTime.fileSystem.dirList contents of current folder on target computer

SimulinkRealTime.fileSystem.diskinfoInformation about target computer drive

SimulinkRealTime.fileSystem.fcloseClose open target computer file or files

SimulinkRealTime.fileSystem.fileinfoTarget computer file information

SimulinkRealTime.fileSystem.filetableInformation about open files in target computer file system

SimulinkRealTime.fileSystem.fopenOpen target computer file for reading

SimulinkRealTime.fileSystem.freadRead open target computer file

SimulinkRealTime.fileSystem.fwriteWrite binary data to open target computer file

SimulinkRealTime.fileSystem.getfilesizeSize of file on target computer

SimulinkRealTime.fileSystem.mkdirMake folder on target computer

SimulinkRealTime.fileSystem.pwdCurrent folder path of target computer

8-104

SimulinkRealTime.fileSystem

Method Description

SimulinkRealTime.fileSystem.removefileRemove file from target computer

SimulinkRealTime.fileSystem.rmdirRemove folder from target computer

8-105

SimulinkRealTime.fileSystem (constructor)

Purpose Create Simulink Real-Time file system object

Syntax filesys_object = SimulinkRealTime.fileSystem
filesys_object = SimulinkRealTime.fileSystem(target_object)

Arguments filesys_object Variable name to reference
the file system object.

target_object Variable name to reference
the target object.

Description Constructor of a file system object (SimulinkRealTime.fileSystem).
The file system object represents the file system on the target computer.
You work with the file system by changing the file system object using
methods.

If you have one target computer, or if you designate a target
computer as the default one in your system, use filesys_object =
SimulinkRealTime.fileSystem to create a file system object.

If you have a target computer object in the
Simulink Real-Time Explorer, use filesys_object =
SimulinkRealTime.fileSystem(target_object) to construct a
corresponding file system object from the MATLAB Command Window.

Examples In the following example, a file system object for the default target
computer is created.

fs1 = SimulinkRealTime.fileSystem

If you have an SimulinkRealTime.target object, you can
construct an SimulinkRealTime.fileSystem object by
passing the SimulinkRealTime.target object variable to the
SimulinkRealTime.fileSystem constructor as an argument.

tg1 = SimulinkRealTime.target('TargetPC1');
fs2 = SimulinkRealTime.fileSystem(tg1)

8-106

SimulinkRealTime.fileSystem.cd

Purpose Change folder on target computer

Syntax cd(file_obj,target_PC_dir)
file_obj.cd(target_PC_dir)

Arguments file_obj Name of the SimulinkRealTime.fileSystem
object.

target_PC_dir Name of the target computer folder to change.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, changes the folder on the target computer.

Examples For the file system object fsys, change the folder from the current one
to one named logs.

cd(fsys,logs) or fsys.cd(logs)

See Also cd | SimulinkRealTime.fileSystem.mkdir |
SimulinkRealTime.fileSystem.pwd

8-107

SimulinkRealTime.fileSystem.dir

Purpose List contents of current folder on target computer

Syntax dir(file_obj)

Arguments file_obj Name of the SimulinkRealTime.fileSystem
object.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, lists the contents of the folder on the target computer.

To get the results in an M-by-1 structure, use a syntax like
ans=dir(file_obj). This syntax returns a structure like the following:

ans =
1x5 struct array with fields:
name
date
time
bytes
isdir

• name — Name of an object in the folder, shown as a cell array. The
name, stored in the first element of the cell array, can have up to
eight characters. The three-character file extension is stored in the
second element of the cell array.

• date— The last date at which the object was saved.

• time— The last time at which the object was saved.

• bytes — Size in bytes of that object.

• isdir— If 1, the object is a folder. If 0, it is not a folder.

Examples List the contents of the folder for the file system object fsys.

dir(fsys)
4/12/1998 20:00 222390 IO SYS

8-108

SimulinkRealTime.fileSystem.dir

11/2/2003 13:54 6 MSDOS SYS
11/5/1998 20:01 93880 COMMAND COM
11/2/2003 13:54 <DIR> 0 TEMP
11/2/2003 14:00 33 AUTOEXEC BAT
11/2/2003 14:00 512 BOOTSECT DOS
18/2/2003 16:33 4512 SC1SIGNA DAT

18/2/2003 16:17 <DIR> 0 FOUND 000
29/3/2003 19:19 8512 DATA DAT
28/3/2003 16:41 8512 DATADATA DAT
28/3/2003 16:29 4512 SC4INTEG DAT
1/4/2003 9:28 201326592 PAGEFILE SYS

11/2/2003 14:13 <DIR> 0 WINNT
4/5/2001 13:05 214432 NTLDR '

4/5/2001 13:05 34468 NTDETECT COM
11/2/2003 14:15 <DIR> 0 DRIVERS
22/1/2001 11:42 217 BOOT INI'

28/3/2003 16:41 8512 A DAT
29/3/2003 19:19 2512 SC3SIGNA DAT
11/2/2003 14:25 <DIR> 0 INETPUB
11/2/2003 14:28 0 CONFIG SYS
29/3/2003 19:10 2512 SC3INTEG DAT
1/4/2003 18:05 2512 SC1GAIN DAT
11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the folder.

See Also dir | SimulinkRealTime.fileSystem.mkdir
| SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.pwd

8-109

SimulinkRealTime.fileSystem.diskinfo

Purpose Target computer drive configuration information

Syntax filesys_obj.diskinfo(target_PC_drive)
diskinfo(filesys_obj,target_PC_drive)

Arguments filesys_obj Name of the SimulinkRealTime.fileSystem
file system object.

target_PC_drive Name of the target computer drive being
accessed.

Description filesys_obj.diskinfo(target_PC_drive) is called from the host
computer and returns configuration information for the specified drive
on the target computer. An alternative syntax is:

diskinfo(filesys_obj,target_PC_drive)

8-110

SimulinkRealTime.fileSystem.diskinfo

Examples For file system object fsys, return configuration information for the
target computer C:\ drive.

diskinfo(fsys,'C:\') or fsys.diskinfo('C:\')
ans =

Label: 'SYSTEM '
DriveLetter: 'C'

Reserved: ''
SerialNumber: 1.0294e+009

FirstPhysicalSector: 63
FATType: 32

FATCount: 2
MaxDirEntries: 0

BytesPerSector: 512
SectorsPerCluster: 4

TotalClusters: 2040293
BadClusters: 0

FreeClusters: 1007937
Files: 19968

FileChains: 22480
FreeChains: 1300

LargestFreeChain: 64349

8-111

SimulinkRealTime.fileSystem.fclose

Purpose Close target computer file

Syntax fclose(filesys_obj,file_ID)
filesys_obj.fclose(file_ID)

Arguments filesys_obj Name of the SimulinkRealTime.fileSystem file
system object.

file_ID File identifier of the file to close.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, closes one or more open files in the target computer file
system (except standard input, output, and error). The file_ID
argument is the file identifier associated with an open file. You cannot
have more than eight files open at the same time in the file system.

Examples Close the open file identified by the file identifier h in the file system
object fsys.

fclose(fsys,h) or fsys.fclose(h)

See Also fclose | SimulinkRealTime.fileSystem.fopen
| SimulinkRealTime.fileSystem.fread |
SimulinkRealTime.fileSystem.filetable |
SimulinkRealTime.fileSystem.fwrite

8-112

SimulinkRealTime.fileSystem.fileinfo

Purpose Target computer file configuration information

Syntax fileinfo(filesys_obj,file_ID)
filesys_obj.fileinfo(file_ID)

Arguments filesys_obj Name of the SimulinkRealTime.fileSystem file
system object.

file_ID File identifier of the file for which to get file
configuration information.

Description From the host computer, gets file configuration information for the file
on the target computer associated with file_ID.

Examples Return file configuration information for the target computer file
associated with the file identifier h in the file system object fsys.

fileinfo(fsys,h) or fsys.fileinfo(h)
ans =

FilePos: 0
AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

8-113

SimulinkRealTime.fileSystem.filetable

Purpose Information about open files in target computer file system

Syntax filetable(filesys_obj)
filesys_obj.filetable

Arguments filesys_obj Name of the SimulinkRealTime.fileSystem file
system object.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, displays a table of the open files in the target computer file
system. You cannot have more than eight files open at the same time in
the file system.

Examples Return a table of the open files in the target computer file system for
the file system object fsys.

filetable(fsys) or fsys.filetable
ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal.
To convert a hexadecimal handle to a handle that other
SimulinkRealTime.fileSystem methods can use, use the MATLAB
hex2dec function.

h1 = hex2dec('001E0001'))
h1 =
1966081

To close that file, use SimulinkRealTime.fileSystem.fclose.

8-114

SimulinkRealTime.fileSystem.filetable

fsys.fclose(h1);

See Also SimulinkRealTime.fileSystem.fopen |
SimulinkRealTime.fileSystem.fclose | hex2dec

8-115

SimulinkRealTime.fileSystem.fopen

Purpose Open target computer file for reading

Syntax file_ID = fopen(file_obj,'file_name')
file_ID = file_obj.fopen('file_name')
file_ID = fopen(file_obj,'file_name',permission)
file_ID = file_obj.fopen('file_name',permission)

Arguments file_obj Name of the SimulinkRealTime.fileSystem
object.

'file_name' Name of the target computer to open.

permission Values are 'r', 'w', 'a', 'r+', 'w+', or 'a+'.
This argument is optional with 'r' as the
default value.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, opens the specified file name on the target computer for
binary access.

The permission argument values are

• 'r'

Open the file for reading (default). If the file does not already exist,
the method does not do anything.

• 'w'

Open the file for writing. If the file does not already exist, the method
creates the file.

• 'a'

Open the file for appending to it. Initially, the file pointer is at the
end of the file. If the file does not already exist, the method creates
the file.

• 'r+'

8-116

SimulinkRealTime.fileSystem.fopen

Open the file for reading and writing. Initially, the file pointer is at
the beginning of the file. If the file does not already exist, the method
does not do anything.

• 'w+'

Open the file for reading and writing. If the file exists, the method
empties the file and places the file pointer at the beginning of the file.
If the file does not already exist, the method creates the file.

• 'a+'

Open the file for reading and appending to the file. Initially, the file
pointer is at the end of the file. If the file does not already exist, the
method creates the file.

You cannot have more than eight files open at one time in the file
system. This method returns the file identifier for the open file in
file_ID. You use file_ID as the first argument to the other file I/O
methods (such as fclose, fread, and fwrite).

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(fsys,h);

See Also fopen | SimulinkRealTime.fileSystem.fclose
| SimulinkRealTime.fileSystem.fread |
SimulinkRealTime.fileSystem.fwrite

8-117

SimulinkRealTime.fileSystem.fread

Purpose Read open target computer file

Syntax A = file_obj.fread(file_ID)
A = fread(file_obj,file_ID)
A = file_obj.fread(file_ID,offset,numbytes)
A = fread(file_obj,file_ID,offset,numbytes)

Arguments file_obj Name of the SimulinkRealTime.fileSystem
object.

file_ID File identifier of the file to read.

offset Position from the beginning of the file from which
fread can start to read.

numbytes Maximum number of bytes fread can read.

Description A = file_obj.fread(file_ID) reads binary data from the file on the
target computer and writes it into matrix A. The file_ID argument is
the file identifier associated with an open file. An alternative syntax is:

A = fread(file_obj,file_ID)

A = file_obj.fread(file_ID,offset,numbytes) reads a block of
bytes from file_ID and writes the block into matrix A. An alternative
syntax is:

A = fread(file_obj,file_ID,offset,numbytes)

The offset argument specifies the position from the beginning of the
file from which this function can start to read. numbytes specifies the
maximum number of bytes to read.

To get a count of the total number of bytes read into A, use the following:

count = length(A);

8-118

SimulinkRealTime.fileSystem.fread

length(A) might be less than the number of bytes requested if that
number of bytes are not currently available. It is zero if the operation
reaches the end of the file.

This is a method of SimulinkRealTime.fileSystem objects called from
the host computer.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for reading.

h=fsys.fopen('data.dat')
d=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to d. This
content is in the Simulink Real-Time file format.

See Also fread | SimulinkRealTime.fileSystem.fclose
| SimulinkRealTime.fileSystem.fopen |
SimulinkRealTime.fileSystem.fwrite

8-119

SimulinkRealTime.fileSystem.fwrite

Purpose Write binary data to open target computer file

Syntax fwrite(file_obj,file_ID,A)
file_obj.fwrite(file_ID,A)

Arguments file_obj Name of the SimulinkRealTime.fileSystem object.

file_ID File identifier of the file to write.

A Elements of matrix A to be written to the specified file.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, writes the elements of matrix A to the file identified by
file_ID. The data is written to the file in column order. The file_ID
argument is the file identifier associated with an open file. fwrite
requires that the file be open with write permission.

Examples Open the file data.dat in the target computer file system object fsys.
Assign the resulting file handle to a variable for writing.

h = fopen(fsys,'data.dat','w')

or

fsys.fopen('data.dat','w')

ans =
2883584

d = fwrite(fsys,h,magic(5));

This writes the elements of matrix A to the file handle h. This content is
written in column order.

See Also fwrite | SimulinkRealTime.fileSystem.fclose
| SimulinkRealTime.fileSystem.fopen |
SimulinkRealTime.fileSystem.fread

8-120

SimulinkRealTime.fileSystem.getfilesize

Purpose Size of file on target computer

Syntax getfilesize(file_obj,file_ID)
file_obj.getfilesize(file_ID)

Arguments file_obj Name of the SimulinkRealTime.fileSystem object.

file_ID File identifier of the file to get the size of.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, gets the size (in bytes) of the file identified by the file_ID
file identifier on the target computer file system. Use the Simulink
Real-Time file object method fopen to open the file system object.

Examples Get the size of the file identifier h for the file system object fsys.

getfilesize(fsys,h) or fsys.getfilesize(h)

See Also SimulinkRealTime.fileSystem.fopen

8-121

SimulinkRealTime.fileSystem.mkdir

Purpose Make folder on target computer

Syntax mkdir(file_obj,dir_name)
file_obj.mkdir(dir_name)

Arguments file_obj Name of the SimulinkRealTime.fileSystem object.

dir_name Name of the folder to be created.

Description Method of SimulinkRealTime.fileSystem objects. From the host
computer, makes a new folder in the current folder on the target
computer file system.

Note that to delete a folder from the target computer, you must restart
the computer into DOS or some other operating system and use a utility
in that system to delete the folder.

Examples Create a new folder, logs, in the target computer file system object
fsys.

mkdir(fsys,logs)

or

fsys.mkdir(logs)

See Also mkdir | SimulinkRealTime.fileSystem.dir |
SimulinkRealTime.fileSystem.pwd

8-122

SimulinkRealTime.fileSystem.pwd

Purpose Current folder path of target computer

Syntax pwd(file_obj)
file_obj.pwd

Arguments file_obj Name of the SimulinkRealTime.fileSystem object.

Description Method of SimulinkRealTime.fileSystem object. Returns the
pathname of the current target computer folder.

Examples Return the target computer current folder for the file system object
fsys.

pwd(fsys) or fsys.pwd

See Also pwd | SimulinkRealTime.fileSystem.dir |
SimulinkRealTime.fileSystem.mkdir

8-123

SimulinkRealTime.fileSystem.removefile

Purpose Remove file from target computer

Syntax removefile(file_obj,file_name)
file_obj.removefile(file_name)

Arguments file_name Name of the file to remove from the target
computer file system.

file_obj Name of the SimulinkRealTime.fileSystem
object.

Description Method of SimulinkRealTime.fileSystem objects. Removes a file from
the target computer file system.

Note You cannot recover this file once it is removed.

Examples Remove the file data2.dat from the target computer file system fsys.

removefile(fsys,'data2.dat')

or

fsys.removefile('data2.dat')

8-124

SimulinkRealTime.fileSystem.rmdir

Purpose Remove folder from target computer

Syntax rmdir(file_obj,dir_name)
file_obj.rmdir(dir_name)

Arguments dir_name Name of the folder to remove from the target
computer file system.

file_obj Name of the SimulinkRealTime.fileSystem object.

Description Method of SimulinkRealTime.fileSystem object. Removes a folder
from the target computer file system.

Note You cannot recover this folder once it is removed.

Examples Remove the folder data2dir.dat from the target computer file system
fsys.

rmdir(f,'data2dir.dat')

or

fsys.rmdir('data2dir.dat')

8-125

SimulinkRealTime.fileSystem.selectdrive

Purpose Select target computer drive

Syntax selectdrive(file_obj,'drive')
file_obj.selectdrive('drive')

Arguments drive Name of the drive to set.

file_obj Name of the SimulinkRealTime.fileSystem object.

Description Method of SimulinkRealTime.fileSystem objects. selectdrive sets
the current drive of the target computer to the specified string. Enter
the drive string with an extra backslash (\). For example, D:\\ for
the D:\ drive.

Note Use the SimulinkRealTime.fileSystem.cd method instead to
get the same behavior.

Examples Set the current target computer drive to D:\.

selectdrive(fsys,'D:\\')

or

fsys.selectdrive('D:\\')

8-126

SimulinkRealTime.target

Purpose Target object representing target application

Description Provides access to methods and properties used to start and stop the
target application, read and set parameters, monitor signals, and
retrieve status information about the target computer.

Constructor

Constructor Description

SimulinkRealTime.target
(constructor)

Create target object representing target application

Methods

Method Description

SimulinkRealTime.target.addscopeCreate scopes

SimulinkRealTime.target.closeClose serial port connecting host computer with target
computer

SimulinkRealTime.target.getReturn target application object property values

SimulinkRealTime.target.getlogAll or part of output logs from target object

SimulinkRealTime.target.getparamValue of target object parameter index

SimulinkRealTime.target.getparamidParameter index from parameter list

SimulinkRealTime.target.getparamnameBlock path and parameter name from index list

SimulinkRealTime.target.getscopeScope object pointing to scope defined in kernel

SimulinkRealTime.target.getsignalValue of target object signal index

SimulinkRealTime.target.getsignalidSignal index or signal property from signal list

SimulinkRealTime.target.getsignalidsfromlabelReturn vector of signal indices

SimulinkRealTime.target.getsignallabelReturn signal label

SimulinkRealTime.target.getsignalnameSignal name from index list

SimulinkRealTime.target.loadDownload target application to target computer

8-127

SimulinkRealTime.target

Method Description

SimulinkRealTime.target.loadparamsetRestore parameter values saved in specified file

SimulinkRealTime.target.pingTests communication between host and target computers

SimulinkRealTime.target.rebootReboot target computer

SimulinkRealTime.target.remscopeRemove scope from target computer

SimulinkRealTime.target.saveparamsetSave current target application parameter values

SimulinkRealTime.target.setChange target application object property values

SimulinkRealTime.target.setparamChange writable target object parameters

SimulinkRealTime.target.startStart execution of target application on target computer

SimulinkRealTime.target.stopStop execution of target application on target computer

SimulinkRealTime.target.unloadRemove current target application from target computer

Properties

Properties are read using SimulinkRealTime.target.get. Writable
properties are written using SimulinkRealTime.target.set.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

No

8-128

SimulinkRealTime.target

Property Description Writable

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

8-129

SimulinkRealTime.target

Property Description Writable

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

8-130

SimulinkRealTime.target

Property Description Writable

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

8-131

SimulinkRealTime.target

Property Description Writable

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you started the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

8-132

SimulinkRealTime.target

Property Description Writable

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

8-133

SimulinkRealTime.target

Property Description Writable

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you must
select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

8-134

SimulinkRealTime.target (constructor)

Purpose Create object to manage target computer

Syntax target_object = SimulinkRealTime.target
target_object = SimulinkRealTime.target(target_name)

Description target_object = SimulinkRealTime.target constructs a target
object representing the default target computer.

target_object = SimulinkRealTime.target(target_name)
constructs a target object representing the target computer designated
by target_name.

Input
Arguments

target_name - Name assigned to target computer
string

Example: ‘TargetPC1’

Data Types
char

Output
Arguments

target_object - Target object representing target computer
structure

Examples Default target computer

Creates a target object to communicate with the default target
computer, assumed to be connected.

target_object = SimulinkRealTime.target

Target: TargetPC1
Connected = Yes
Application = loader

Specific target computer

Creates a target object to communicate with target computer
TargetPC1, assumed to be not connected.

8-135

SimulinkRealTime.target (constructor)

target_object = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1
Connected = No

See Also slrt | SimulinkRealTime.TargetSettings |
SimulinkRealTime.target.get | SimulinkRealTime.target.set

8-136

SimulinkRealTime.target.addscope

Purpose Create scopes

Syntax Create a scope and scope object without assigning to a MATLAB
variable.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number)

Create a scope, scope object, and assign to a MATLAB variable

scope_object = addscope(target_object,

scope_type, scope_number)

scope_object = target_object.addscope(scope_type,

scope_number)

Target computer command line — When you are using this
command on the target computer, you can only add a target scope.

addscope
addscope scope_number

Arguments target_object Name of a target object. The default target name
is tg.

scope_type Values are 'host', 'target', or 'file'. This
argument is optional with host as the default value.

scope_number Vector of new scope indices. This argument is
optional. The next available integer in the target
object property Scopes as the default value.

If you enter a scope index for an existing scope object,
the result is an error.

Description addscope creates a scope of the specified type and updates the target
object property Scopes. This method returns a scope object vector. If
the result is not assigned to a variable, the scope object properties
are listed in the MATLAB window. The Simulink Real-Time product

8-137

SimulinkRealTime.target.addscope

supports 10 target scopes, 8 file scopes, and as many host scopes as the
target computer resources can support. If you try to add a scope with
the same index as an existing scope, the result is an error.

Examples Create a scope and scope object sc1 using the method addscope. A
target scope is created on the target computer with an index of 1, and a
scope object is created on the host computer, assigned to the variable
sc1. The target object property Scopes is changed from No scopes
defined to 1.

sc1 = addscope(tg,'target',1)

or

sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then create a scope object,
corresponding to this scope, using the method getscope. A target scope
is created on the target computer with an index of 1, and a scope object
is created on the host computer, but it is not assigned to a variable. The
target object property Scopes is changed from No scopes defined to 1.

addscope(tg,'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

8-138

SimulinkRealTime.target.addscope

Create two scopes using a vector of scope objects scvector. Two target
scopes are created on the target computer with scope indices of 1 and 2,
and two scope objects are created on the host computer that represent
the scopes on the target computer. The target object property Scopes
is changed from No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

Create a scope and scope object sc4 of type file using the method
addscope. A file scope is created on the target computer with an index
of 4. A scope object is created on the host computer and is assigned to
the variable sc4. The target object property Scopes is changed from
No scopes defined to 4.

sc4 = addscope(tg,'file',4) or sc4 = tg.addscope('file',4)

See Also SimulinkRealTime.target.remscope |
SimulinkRealTime.target.getscope

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

8-139

SimulinkRealTime.target.close

Purpose Close serial port connecting host computer with target computer

Syntax close(target_object)
target_object.close

Arguments target_object Name of a target object.

Description close closes the serial connection between the host computer and a
target computer. If you want to use the serial port for another function
without quitting the MATLAB window – for example, a modem – use
this function to close the connection.

8-140

SimulinkRealTime.target.get

Purpose Return target application object property values

Syntax get(target_object, 'target_object_property')

Arguments target_object Name of a target object.

'target_object_property'Name of a target object property.

Description get gets the value of readable target object properties from a target
object.

The properties for a target object are listed in the following table. This
table includes a description of the properties and which properties you
can change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

No

8-141

SimulinkRealTime.target.get

Property Description Writable

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

8-142

SimulinkRealTime.target.get

Property Description Writable

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

8-143

SimulinkRealTime.target.get

Property Description Writable

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

8-144

SimulinkRealTime.target.get

Property Description Writable

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you started the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

8-145

SimulinkRealTime.target.get

Property Description Writable

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

8-146

SimulinkRealTime.target.get

Property Description Writable

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you must
select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

Examples List the value for the target object property StopTime. Notice that the
property name is a string, in quotation marks, and not case sensitive.

get(tg,'stoptime') or tg.get('stoptime')
ans = 0.2

See Also SimulinkRealTime.target.set | get
| SimulinkRealTime.fileScope.get
| SimulinkRealTime.hostScope.get |
SimulinkRealTime.targetScope.get

8-147

SimulinkRealTime.target.getlog

Purpose All or part of output logs from target object

Syntax log = getlog(target_object, 'log_name', first_point,
number_samples, decimation)

Arguments log User-defined MATLAB variable.

'log_name' Values are TimeLog, StateLog, OutputLog, or
TETLog. This argument is required.

first_point First data point. The logs begin with 1. This
argument is optional. Default is 1.

number_samples Number of samples after the start time. This
argument is optional. Default is all points in log.

decimation 1 returns all sample points. n returns every nth
sample point. This argument is optional. Default
is 1.

Description Use this function instead of the function get when you want only part
of the data.

Examples To get the first 1000 points in a log,

Out_log = getlog(tg, 'TETLog', 1, 1000)

To get every other point in the output log and plot values,

Output_log = getlog(tg, 'TETLog', 1, 10, 2)
Time_log = getlog(tg, 'TimeLog', 1, 10, 2)
plot(Time_log, Output_log)

See Also SimulinkRealTime.target.get

How To • “Set Configuration Parameters”

8-148

SimulinkRealTime.target.getparam

Purpose Value of target object parameter index

Syntax getparam(target_object, parameter_index)

Arguments target_object Name of a target object. The default
name is tg.

parameter_index Index number of the parameter.

Description getparam returns the value of the parameter associated with
parameter_index.

Examples Get the value of parameter index 5.

getparam(tg, 5)
ans = 400

8-149

SimulinkRealTime.target.getparamid

Purpose Parameter index from parameter list

Syntax getparamid(target_object, 'block_name', 'parameter_name')

Arguments target_object Name of a target object. The default name
is tg.

'block_name' Simulink block path without model name.

'parameter_name' Name of a parameter within a Simulink
block.

Description getparamid returns the index of a parameter in the parameter list
based on the path to the parameter name. The names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Examples Get the parameter property for the parameter Gain in the Simulink
block Gain1, incrementally increase the gain, and pause to observe
the signal trace.

id = getparamid(tg, 'Subsystem/Gain1', 'Gain')
for i = 1 : 3

set(tg, id, i*2000);
pause(1);

end

Get the property index of a single block.

getparamid(tg, 'Gain1', 'Gain') ans = 5

See Also SimulinkRealTime.target.getsignalid

How To • “Application and Driver Scripts”

• “Why Does the getparamid Function Return Nothing?”

8-150

SimulinkRealTime.target.getparamname

Purpose Block path and parameter name from index list

Syntax getparamname(target_object, parameter_index)

Arguments target_object Name of a target object. The default name
is tg.

parameter_index Index number of the parameter.

Description getparamname returns two argument strings, block path and parameter
name, from the index list for the specified parameter index.

Examples Get the block path and parameter name of parameter index 5.

[blockPath,parName]=getparamname(tg,5)
blockPath =
Signal Generator
parName =
Amplitude

8-151

SimulinkRealTime.target.getPCIInfo

Purpose Determine PCI boards installed in target computer

Syntax target_object.getPCIInfo
target_object.getPCIInfo('all')
target_object.getPCIInfo('verbose')

pci_devices = target_object.getPCIInfo(___)

target_object.getPCIInfo('supported')
pci_devices_supported =
target_object.getPCIInfo('supported')

Description target_object.getPCIInfo without an argument queries the target
computer represented by target_object for installed PCI devices
(boards) that are supported by driver blocks in the Simulink Real-Time
block library. The call displays in the Command Window information
about the PCI devices found, including:

• PCI bus number

• Slot number

• Assigned IRQ number

• Vendor (manufacturer) name

• Device (board) name

• Device type

• Vendor PCI ID

• Device PCI ID

• Device release version.

Before you can use this call, you must meet the following preconditions:

• The host-target communication link must be working. Before
you can use target_object.getPCIInfo, the function
SimulinkRealTime.target.pingTarget must return success.

8-152

SimulinkRealTime.target.getPCIInfo

• Either a target application is loaded or the loader is active. Before
building the model, you can use target_object.getPCIInfo to find
resources to enter into a driver block dialog box. Such resources
include PCI bus number, slot number, and assigned IRQ number.

target_object.getPCIInfo('all') displays information about
all of the PCI devices found on the target computer represented by
target_object. This information includes graphics controllers,
network cards, SCSI cards, and devices that are part of the motherboard
chip set (for example, PCI-to-PCI bridges).

target_object.getPCIInfo('verbose') shows the information
displayed by target_object.getPCIInfo('all') for the target
computer represented by target_object, plus information about the
PCI addresses assigned to this board by the BIOS.

pci_devices = target_object.getPCIInfo(___) queries the target
computer represented by target_object according to the argument
supplied and returns a structure containing information about the PCI
devices found.

target_object.getPCIInfo('supported') displays a list of the
PCI devices currently supported by the Simulink Real-Time block
library. This call does not access the target computer, so host-target
communication does not have to be active.

pci_devices_supported =
target_object.getPCIInfo('supported') returns a structure
containing a list of PCI devices currently supported by the Simulink
Real-Time block library. This call does not access the target computer,
so host-target communication does not have to be active.

8-153

SimulinkRealTime.target.getPCIInfo

Input
Arguments

target_object - Object representing target computer
object created by slrt

Object representing the target computer being queried, as
returned by slrt.

Example: target_object = slrt('TargetPC1')

Data Types
function_handle

Output
Arguments

pci_devices - Information about the PCI devices in the target
computer
vector

The vector returned by getPCIInfo without an argument contains
information only for those PCI devices supported by Simulink
Real-Time blocks. The vectors returned by getPCIInfo with the
arguments 'all' and 'verbose' contain information about all
PCI devices in the target computer and are identical.

The fields in this structure are:

Bus - PCI bus where device resides
scalar

Bus and Slot are used together to uniquely identify the
location of a device or bus adapter in the target computer.

Slot - PCI slot where device resides
scalar

Slot and Bus are used together to uniquely identify the
location of a device or bus adapter in the target computer.

VendorID - Identifier for manufacturer of the device
string

Hexadecimal numeric string containing the identifier
assigned by the PCI standards organization to the
manufacturer of this device or bus adapter.

8-154

SimulinkRealTime.target.getPCIInfo

DeviceID - Identifier for device among those manufactured
by the vendor
string

Hexadecimal numeric string containing the identifier
assigned by the manufacturer to this device or bus adapter.

SubVendorID - Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier
assigned by the PCI standards organization to the
manufacturer of the entire subsystem (board).

SubDeviceID - Identifier for subsystem among those
manufactured by the subvendor
string

Hexadecimal numeric string containing the identifier
assigned by the manufacturer to this subsystem (board).

BaseClass - Standard PCI class of the device
string

Hexadecimal numeric string containing the standard PCI
base classification of this device or bus adapter. BaseClass
and SubClass together identify the type and function of the
device.

SubClass - Standard PCI subclass of the device
string

Hexadecimal numeric string containing the standard
PCI subclass classification of this device or bus adapter.
SubClass and BaseClass together identify the type and
function of the device.

Interrupt - IRQ used by the device
scalar

Provides the board-level interrupt used by the device or bus
adapter to trigger I/O with the target computer CPU.

8-155

SimulinkRealTime.target.getPCIInfo

BaseAddresses - Information for each Base Address
Register (BAR) used by the device
vector

For each BAR used by this device or bus adapter, the vector
contains a structure with the following fields:

AddressSpaceIndicator - Indicates whether the address
is a memory or I/O address
0 | 1

• 0 — Address is memory address

• 1 — Address is I/O address

BaseAddress - Memory address used by the device
string

Hexadecimal string containing the base memory
address used by the device.

MemoryType - Indicates the size of the address
decode, 32-bit or 64-bit
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — 32-bit address decode

• 1 — 64-bit address decode

Prefetchable - Indicates whether the memory is
prefetchable
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — Address not prefetchable

• 1 — Address prefetchable

8-156

SimulinkRealTime.target.getPCIInfo

VendorName - Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter.
Set to 'Unknown' for unknown devices or bus adapters.

Release - MATLAB release version in which driver became
available
string

If the device is supported by the Simulink Real-Time block
library, contains the MATLAB and Simulink release version
in which the driver was released. Otherwise, contains an
empty vector.

Notes - Additional information about the device
string

Contains additional description of the device or bus adapter.

DeviceName - Name of device
string

Identifies the specific device or bus adapter. Set to
'Unknown' for unknown devices or bus adapters.

DeviceType - Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that
indicate the function or functions of the device or bus
adapter.

ADChan - Number of analog inputs
string

Decimal numeric string containing the number of analog
inputs to the device.

DAChan - Number of analog outputs
string

8-157

SimulinkRealTime.target.getPCIInfo

Decimal numeric string containing the number of analog
outputs from the device.

DIOChan - Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital
inputs and outputs to and from the device.

pci_devices_supported - Information about the PCI devices
supported by the product
vector

Vector of information about the devices and bus adapters
represented by blocks in the Simulink Real-Time block library.

The fields are as follows:

VendorID - Identifier for manufacturer of the device
string

Hexadecimal numeric string containing the identifier
assigned by the PCI standards organization to the
manufacturer of this device or bus adapter.

DeviceID - Identifier for device among those manufactured
by the vendor
string

Hexadecimal numeric string containing the identifier
assigned by the manufacturer to this device or bus adapter.

SubVendorID - Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier
assigned by the PCI standards organization to the
manufacturer of the entire subsystem (board).

SubDeviceID - Identifier for subsystem among those
manufactured by the subvendor
string

8-158

SimulinkRealTime.target.getPCIInfo

Hexadecimal numeric string containing the identifier
assigned by the manufacturer to this subsystem (board).

DeviceName - Name of device
string

Identifies the specific device or bus adapter. Set to
'Unknown' for unknown devices or bus adapters.

VendorName - Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter.
Set to 'Unknown' for unknown devices or bus adapters.

DeviceType - Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that
indicate the function or functions of the device or bus
adapter.

DAChan - Number of analog outputs
string

Decimal numeric string containing the number of analog
outputs from the device.

ADChan - Number of analog inputs
string

Decimal numeric string containing the number of analog
inputs to the device.

DIOChan - Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital
inputs and outputs to and from the device.

Release - MATLAB release version in which driver became
available
string

8-159

SimulinkRealTime.target.getPCIInfo

If the device is supported by the Simulink Real-Time block
library, contains the MATLAB and Simulink release version
in which the driver was released. Otherwise, contains an
empty vector.

Notes - Additional information about the device
string

Contains additional description of the device or bus adapter.

Examples Display information for PCI devices that are supported by
Simulink Real-Time block library on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

slrtpingtarget

tg.getPCIInfo

List of installed PCI devices:

Measurement Computing PCI-DIO24
Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier

.

.

.

Display information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

8-160

SimulinkRealTime.target.getPCIInfo

slrtpingtarget

tg.getPCIInfo('all')

List of installed PCI devices:

Intel Unknown
Bus 0, Slot 0, IRQ 0
Host Bridge
VendorID 0x8086, DeviceID 0x1130,

SubVendorID 0x8086, SubDeviceID 0x4532
.
.
.
Measurement Computing PCI-DIO24

Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier

.

.

.

Display verbose information for all PCI devices on default
computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.

slrtpingtarget

tg.getPCIInfo('verbose')

List of installed PCI devices:

8-161

SimulinkRealTime.target.getPCIInfo

Intel Unknown
Bus 0, Slot 0, IRQ 0
Host Bridge
VendorID 0x8086, DeviceID 0x1130,

SubVendorID 0x8086, SubDeviceID 0x4532
BaseClass 6, SubClass 0
BAR BaseAddress AddressSpace MemoryType PreFetchable
0) E8000000 Memory 32-bit decoder no

.

.

.
Measurement Computing PCI-DIO24

Bus 1, Slot 11, IRQ 10
DI DO
VendorID 0x1307, DeviceID 0x0028,

SubVendorID 0x1307, SubDeviceID 0x0028
A/D Chan: 0, D/A Chan: 0, DIO Chan: 24
Released in: R14SP2 or Earlier
BaseClass FF, SubClass FF
BAR BaseAddress AddressSpace
1) DC00 I/O
2) DFF4 I/O

.

.

.

Return information for PCI devices that are supported by
Simulink Real-Time block library on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.
Display the first structure in the vector.

slrtpingtarget

pci_devices = tg.getPCIInfo;
pci_devices(1)

8-162

SimulinkRealTime.target.getPCIInfo

ans =

Bus: 1
Slot: 11

VendorID: '1307'
DeviceID: '28'

SubVendorID: '1307'
SubDeviceID: '28'

BaseClass: 'FF'
SubClass: 'FF'

Interrupt: 10
BaseAddresses: [1x6 struct]

VendorName: 'Measurement Computing'
Release: 'R14SP2 or Earlier'

Notes: ''
DeviceName: 'PCI-DIO24'
DeviceType: 'DI DO'

ADChan: '0'
DAChan: '0'

DIOChan: '24'

Return information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel.
Verify the connection between the host and the target computer. At the
MATLAB command prompt, type the command on the host computer.
Display the first structure in the vector.

slrtpingtarget

pci_devices = tg.getPCIInfo('all');
pci_devices(1)

ans =

Bus: 0
Slot: 0

8-163

SimulinkRealTime.target.getPCIInfo

VendorID: '8086'
DeviceID: '1130'

SubVendorID: '8086'
SubDeviceID: '4532'

BaseClass: '6'
SubClass: '0'

Interrupt: 0
BaseAddresses: [1x6 struct]

VendorName: 'Intel'
Release: ''

Notes: ''
DeviceName: 'Unknown'
DeviceType: 'Host Bridge'

ADChan: ''
DAChan: ''

DIOChan: ''

Return verbose information for all PCI devices via
target_object

Start the default target computer with the Simulink Real-Time kernel.
Get the target_object using SimulinkRealTime.target. Verify the
connection between the host and the target computer. At the MATLAB
prompt, type the command on the host computer. Display the first
structure in the vector.

target_object = slrt('XPCLABTGT4');
target_object.pingTarget

pci_devices=getPCIInfo(target_object,'verbose');
pci_devices(1)

ans =

Bus: 0
Slot: 0

VendorID: '8086'

8-164

SimulinkRealTime.target.getPCIInfo

DeviceID: '1130'
SubVendorID: '8086'
SubDeviceID: '4532'

BaseClass: '6'
SubClass: '0'

Interrupt: 0
BaseAddresses: [1x6 struct]

VendorName: 'Intel'
Release: ''

Notes: ''
DeviceName: 'Unknown'
DeviceType: 'Host Bridge'

ADChan: ''
DAChan: ''

DIOChan: ''

Display all PCI devices supported by Simulink Real-Time
block library

At the MATLAB prompt, type the commands on the host computer. The
target computer need not be active.

target_object = SimulinkRealTime.target

target_object.getPCIInfo('supported')

List of supported PCI devices:

Vendor Device Type . . .

ADDI-DATA APCI-1710 Inc. Encoder . . .
ADLINK PCI-6208A AO DI DO . . .
.
.
.
Speedgoat IO321 (PMC-FPGA) AI (IO321-5) . . .
Speedgoat IO331 (PMC-FPGA) DI DO (LVDS/LVCMOS) . . .

8-165

SimulinkRealTime.target.getPCIInfo

Return all PCI devices supported by Simulink Real-Time
block library

At the MATLAB prompt, type the commands on the host computer. The
target computer need not be active.

target_object = SimulinkRealTime.target

pci_devices_supported = target_object.getPCIInfo('supported');
pci_devices_supported(1)

ans =

VendorID: '10e8'
DeviceID: '818f'

SubVendorID: '-1'
SubDeviceID: '-1'
DeviceName: 'APCI-1710'
VendorName: 'ADDI-DATA'
DeviceType: 'Inc. Encoder'

DAChan: '0'
ADChan: '0'

DIOChan: '0'
Release: 'R14SP2 or Earlier'

Notes: ''

Related
Examples

• “Where to Find PCI Board Information”
• “Command-Line Ethernet Card Selection by Index”

Concepts • “PCI Bus I/O Devices”

8-166

SimulinkRealTime.target.getscope

Purpose Scope object pointing to scope defined in kernel

Syntax scope_object_vector = getscope(target_object, scope_number)
scope_object = target_object.getscope(scope_number)

Arguments target_object Name of a target object.

scope_number_vector Vector of existing scope indices listed in the
target object property Scopes. The vector can
have only one element.

scope_object MATLAB variable for a new scope object
vector. The vector can have only one scope
object.

Description getscope returns a scope object vector. If you try to get a nonexistent
scope, the result is an error. You can retrieve the list of existing
scopes using the method get(target_object, 'scopes') or
target_object.scopes.

Examples If your Simulink model has an Simulink Real-Time scope block, a target
scope is created at the time the target application is downloaded to the
target computer. To change the number of samples, you must create a
scope object and then change the scope object property NumSamples.

8-167

SimulinkRealTime.target.getscope

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

The following example gets the properties of all scopes on the target
computer and creates a vector of scope objects on the host computer. If
the target object has more than one scope, it create a vector of scope
objects.

scvector = getscope(tg)

See Also SimulinkRealTime.getTargetSettings |
SimulinkRealTime.target.remscope

How To • “Application and Driver Scripts”

8-168

SimulinkRealTime.target.getsignal

Purpose Value of target object signal index

Syntax getsignal(target_object, signal index)

Arguments target_object Name of a target object. The default name is tg.

signal_index Index number of the signal.

Description getsignal returns the value of the signal associated with
signal_index.

Examples Get the value of signal index 2.

getsignal(tg, 2)
ans = -3.3869e+006

8-169

SimulinkRealTime.target.getsignalid

Purpose Signal index or signal property from signal list

Syntax getsignalid(target_object, 'signal_name')
tg.getsignalid('signal_name')

Arguments target_object Name of an existing target object.

signal_name Enter the name of a signal from your Simulink
model. For blocks with a single signal, the
signal_name is equal to the block_name. For
blocks with multiple signals, the Simulink
Real-Time software appends S1, S2 . . . to the
block_name.

Description getsignalid returns the index or name of a signal from the signal list,
based on the path to the signal name. The block names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Simulink Coder uses for code generation.

Examples Get the signal index for the single signal from the Simulink block Gain1.

tg = slrt;
getsignalid(tg, 'Gain1') or tg.getsignalid('Gain1')
ans = 6

See Also SimulinkRealTime.target.getparamid

How To • “Application and Driver Scripts”

• “Why Does the getparamid Function Return Nothing?”

8-170

SimulinkRealTime.target.getsignalidsfromlabel

Purpose Return vector of signal indices

Syntax getsignalidsfromlabel(target_object, signal_label)
target_object.getsignalidsfromlabel(signal_label)

Arguments target_object Name of a target object. The default name
is tg.

signal_label Signal label (from Simulink model).

Description getsignalidsfromlabel returns a vector of one or more signal indices
that are associated with the labeled signal, signal_label. This
function assumes that you have labeled the signal for which you request
the index (see the Signal name parameter of the “Signal Properties
Controls”). Note that the Simulink Real-Time software refers to
Simulink signal names as signal labels.

Examples Get the vector of signal indices for a signal labeled Gain.

tg = slrt;
tg.getsignalidsfromlabel('xpcoscGain')
ans =
0

See Also SimulinkRealTime.target.getsignallabel

8-171

SimulinkRealTime.target.getsignallabel

Purpose Return signal label

Syntax getsignallabel(target_object, signal_index)
target_object.getsignallabel(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignallabel returns the signal label for the specified signal index,
signal_index. signal_label. This function assumes that you have
labeled the signal for which you request the label (see the Signal name
parameter of the “Signal Properties Controls”). Note that the Simulink
Real-Time software refers to Simulink signal names as signal labels.

Examples tg = slrt;
getsignallabel(tg, 0)
ans =
xpcoscGain

See Also SimulinkRealTime.target.getsignalidsfromlabel

8-172

SimulinkRealTime.target.getsignalname

Purpose Signal name from index list

Syntax getsignalname(target_object, signal_index)
target_object.getsignalname(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignalname returns one argument string, signal name, from the
index list for the specified signal index.

Examples Get the signal name of signal ID 2.

[sigName]=getsignalname(tg,2)
sigName =
Gain2

8-173

SimulinkRealTime.target.load

Purpose Download target application to target computer

Syntax target_object = target_object.load(target_application)
target_object = load(target_object,target_application)

Description target_object = target_object.load(target_application) loads
the application target_application onto the target computer
represented by target_object.

The call returns target_object, updated with the new state of the
target.

target_object = load(target_object,target_application) is an
alternative syntax.

Input
Arguments

target_object

Object of type SimulinkRealTime.target that represents the
target computer. Before calling this function, make sure that you
have started the target computer with the Simulink Real-Time
kernel and have applied the required host-target communication
settings.

Data Types
struct

target_application

Name of the target application, without file extension.
target_application can also contain the absolute path to the
target application, without file extension.

You must build the application in the current working folder
on the host computer. By default, the Simulink Real-Time
software calls SimulinkRealTime.target.load automatically
after the Simulink Coder build process completes. If a target
application was previously loaded, before downloading the new
target application, SimulinkRealTime.target.load unloads the old
target application.

8-174

SimulinkRealTime.target.load

If you are running the target application in Standalone mode, a
call to SimulinkRealTime.target.load has no effect. To load a new
application, you must rebuild the standalone application files with
the new application and transfer the updated files to the target
computer using SimulinkRealTime.fileSystem. Then, restart the
target computer with the new standalone application.

Data Types
char

Examples Load xpcosc

Load the target application xpcosc into target computer TargetPC1,
represented by target object tg. Start the application.

Get the target object.

tg = SimulinkRealTime.target('TargetPC1')

Simulink Real-Time Object

Connected = Yes
Application = loader

Load the target application.

tg.load('xpcosc')

Simulink Real-Time Object

Connected = Yes
Application = xpcosc
Mode = Real-Time Single-Tasking
Status = stopped
CPUOverload = none

ExecTime = 0.0000
SessionTime = 918.5713
StopTime = 0.200000

8-175

SimulinkRealTime.target.load

SampleTime = 0.000250
AvgTET = NaN
MinTET = 9999999.000000
MaxTET = 0.000000
ViewMode = 0

TimeLog = Vector(0)
StateLog = Matrix (0 x 2)
OutputLog = Matrix (0 x 2)
TETLog = Vector(0)
MaxLogSamples = 16666
NumLogWraps = 0
LogMode = Normal

Scopes = No Scopes defined
NumSignals = 7
ShowSignals = off

NumParameters = 7
ShowParameters = off

Start the application.

tg.start;

See Also SimulinkRealTime.target.unload

Related
Examples

• “Application and Driver Scripts”

8-176

SimulinkRealTime.target.loadparamset

Purpose Restore parameter values saved in specified file

Syntax loadparamset(target_object,'filename')
target_object.loadparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file that contains the saved
parameters.

Description loadparamset restores the target application parameter values saved in
the file filename. This file must be located on a local drive of the target
computer. This method assumes that you have a parameter file from a
previous run of the SimulinkRealTime.target.saveparamset method.

See Also SimulinkRealTime.target.saveparamset

8-177

SimulinkRealTime.target.reboot

Purpose Reboot target computer

Syntax MATLAB command line

reboot(target_object)

Target computer command line

reboot

Arguments target_object Name of an existing target object.

Description reboot restarts the target computer, and if a target boot disk is still
present, the Simulink Real-Time kernel is reloaded.

On the target computer command line, you can use the corresponding
command reboot.

You can also use this method to restart the target computer back to
Windows after removing the target boot disk.

Note This method might not work on some target hardware.

See Also SimulinkRealTime.target.load | SimulinkRealTime.target.unload

8-178

SimulinkRealTime.target.remscope

Purpose Remove scope from target computer

Syntax MATLAB command line

remscope(target_object, scope_number_vector)
target_object.remscope(scope_number_vector)
remscope(target_object)
target_object.remscope

Target computer command line

remscope scope_number
remscope 'all'

Arguments target_object Name of a target object. The default name is
tg.

scope_number_vectorVector of existing scope indices listed in the
target object property Scopes.

scope_number Single scope index.

Description If a scope index is not given, the method remscope deletes all scopes on
the target computer. The method remscope has no return value. The
scope object representing the scope on the host computer is not deleted.

8-179

SimulinkRealTime.target.remscope

Note that you can only permanently remove scopes that are added with
the method addscope. This is a scope that is outside a model. If you
remove a scope that has been added through a scope block (the scope
block is inside the model), a subsequent run of that model creates the
scope again.

Examples Remove a single scope.

remscope(tg,1)

or

tg.remscope(1)

Remove two scopes.

remscope(tg,[1 2])

or

tg.remscope([1,2])

Remove all scopes.

remscope(tg)

or

tg.remscope

See Also SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getscope

How To • “Application and Driver Scripts”

8-180

SimulinkRealTime.target.saveparamset

Purpose Save current target application parameter values

Syntax saveparamset(target_object,'filename')
target_object.saveparamset('filename')

Arguments target_object Name of an existing target object.

filename Enter the name of the file to contain the saved
parameters.

Description saveparamset saves the target application parameter values in the
file filename. This method saves the file on a local drive of the target
computer (C:\ by default). You can later reload these parameters with
the loadparamset function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
real time. Saving these values enables you to easily recreate target
application parameter values from a number of application runs.

See Also SimulinkRealTime.target.loadparamset

8-181

SimulinkRealTime.target.set

Purpose Change target application object property values

Syntax MATLAB command line

set(target_object)
set(target_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
target_object.set('property_name1', 'property_value1')
set(target_object, property_name_vector,
property_value_vector)
target_object.property_name = property_value

Target computer command line - Commands are limited to the
target object properties stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments target_object Name of a target object.

'property_name' Name of a target object property. Always use
quotation marks.

property_value Value for a target object property. Always
use quotation marks for character strings;
quotation marks are optional for numbers.

Description set sets the properties of the target object. Not all properties are user
writable.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target object

8-182

SimulinkRealTime.target.set

are listed in the following table. This table includes a description of
the properties:

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter is set in the Simulink
Real-Time Options node of the model
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

No

8-183

SimulinkRealTime.target.set

Property Description Writable

• Interrupt latency required to schedule
and run one step of the model

CommunicationTimeOut Communication timeout between host and
target computer, in seconds.

Yes

Connected Communication status between the host
computer and the target computer. Values
are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and the
current run is stopped. Returning this
status to 'none' requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

8-184

SimulinkRealTime.target.set

Property Description Writable

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is in the
Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Simulink Coder code generation.
Values are 'Real-Time Singletasking',
'Real-Time Multitasking', and
'Accelerate'. The default value is
'Real-Time Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

8-185

SimulinkRealTime.target.set

Property Description Writable

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution
of the target application.

No

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

8-186

SimulinkRealTime.target.set

Property Description Writable

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “Alternative Configuration and
Control Methods” for limitations on target
property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target computer. This is also the
elapsed time since you started the target
computer. Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

8-187

SimulinkRealTime.target.set

Property Description Writable

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running.

Yes

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you must
select the Log Task Execution Time
check box in the Simulink Real-Time
Options pane of the Configuration
Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target computer. Value is 'all'
or a single scope index. This property is
active only if the environment property
TargetScope is set to enabled.

Yes

The function set typically does not return a value. However, if called
with an explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the value of the
properties after the indicated settings have been made.

8-188

SimulinkRealTime.target.set

Examples Get a list of writable properties for a scope object.

set(tg)
ans =

StopTime: {}
SampleTime: {}

ViewMode: {}
LogMode: {}

ShowParameters: {}
ShowSignals: {}

Change the property ShowSignals to on.

tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
ShowSignals. In the MATLAB window, type

tg.showsignals ='on'

See Also SimulinkRealTime.target.get | set
| SimulinkRealTime.fileScope.set
| SimulinkRealTime.hostScope.set |
SimulinkRealTime.targetScope.set

How To • “Application and Driver Scripts”

8-189

SimulinkRealTime.target.setparam

Purpose Change writable target object parameters

Syntax setparam(target_object, parameter_index, parameter_value)

Arguments target_object Name of an existing target object. The default
name is tg.

parameter_index Index number of the parameter.

parameter_value Value for a target object parameter.

Description Method of a target object. Set the value of the target parameter. This
method returns a structure that stores the parameter index, previous
parameter values, and new parameter values in the following fields:

• parIndexVec

• OldValues

• NewValues

Examples Set the value of parameter index 5 to 100.

setparam(tg, 5, 100)
ans =
parIndexVec: 5
OldValues: 400
NewValues: 100

Simultaneously set values for multiple parameters. Use the cell array
format to specify new parameter values.

setparam(tg, [1 5],{10,100})
ans =
parIndexVec: [1 5]
OldValues: {[2] [4]}
NewValues: {[10] [100]}

8-190

SimulinkRealTime.target.start

Purpose Start execution of target application on target computer

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target computer command line

start

Arguments target_object Name of a target object. The default name is tg.

Description Method of both target objects. Starts execution of the target application
represented by the target object. Before using this method, the target
application must be created and loaded on the target computer. If a
target application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

See Also SimulinkRealTime.target.stop | SimulinkRealTime.target.load
| SimulinkRealTime.fileScope.stop
| SimulinkRealTime.hostScope.stop |
SimulinkRealTime.targetScope.stop

8-191

SimulinkRealTime.target.stop

Purpose Stop execution of target application on target computer

Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target computer command line

stop

Arguments target_object Name of a target object.

Description Stops execution of the target application represented by the target
object. If the target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also SimulinkRealTime.target.start |
SimulinkRealTime.fileScope.stop |
SimulinkRealTime.hostScope.stop |
SimulinkRealTime.targetScope.stop

8-192

SimulinkRealTime.target.ping

Purpose Tests communication between host and target computers

Syntax SimulinkRealTime.target.ping

Description Returns success if the Simulink Real-Time kernel is loaded and
running, and communication is working between the host and target
computers. Otherwise, returns failed.

SimulinkRealTime.target.ping without an argument returns
success if the host computer and the target computer can communicate
using the settings for that computer. Otherwise, returns failed.

Examples Check communication with default target computer

tg = slrt;
tg.ping

Check communication with specified target computer

tg = slrt('TargetPC1');
tg.ping

8-193

SimulinkRealTime.target.unload

Purpose Remove current target application from target computer

Syntax unload(target_object)
target_object.unload

Arguments target_object Name of a target object that represents a target
application.

Description Method of a target object. The kernel goes into loader mode and is ready
to download new target application from the host computer.

If you are running in StandAlone mode, this command has no effect. To
unload and reload a new application, you must rebuild the standalone
application with the new application, then restart the target computer
with the updated standalone application.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also SimulinkRealTime.target.load | SimulinkRealTime.target.reboot

8-194

SimulinkRealTime.target.viewTargetScreen

Purpose Open Real-Time Simulink Real-Time window on host computer

Syntax SimulinkRealTime.target.viewTargetScreen

Description SimulinkRealTime.target.viewTargetScreen opens a Simulink
Real-Time display window for target_object.

If you have one target computer, or if you designate a target computer
as the default one in your system, use the following syntax after you
build and download the target application:

tg = slrt;
tg.viewTargetScreen

If you have multiple target computers in your system, create the target
object first:

tg = SimulinkRealTime.target('target_name')
tg.viewTargetScreen

The behavior of this function depends on the value for the environment
property TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded.

The screen is not continually updated because of a higher data volume
when a target graphics card is in VGA mode. You must explicitly
request an update. To manually update the host screen with another
target screen, move the pointer into the display window, right-click,
and select Update Simulink Real-Time Target Screen.

• If TargetScope is disabled, text output is transferred once every
second to the host and displayed in the window.

Examples To open the Simulink Real-Time display window for the default target
computer in the Command Window, type:

tg = slrt;
tg.viewTargetScreen

8-195

SimulinkRealTime.target.viewTargetScreen

To open the display window for target computer TargetPC1 in the
Command Window, type:

tg1 = slrt('TargetPC1');
tg1.viewTargetScreen

8-196

SimulinkRealTime.fileScope

Purpose Control and access properties of file scopes

Description The scope gets a data package from the kernel and stores the data in
a file in the target computer file system. Depending on the setting of
WriteMode, the file size is or is not continuously updated. You can then
transfer the data to another computer for examination or plotting.

Methods

These methods are held in common by file, host, and target scopes.

Method Description

SimulinkRealTime.fileScope.addsignalAdd signals to scope represented by scope object

SimulinkRealTime.fileScope.getReturn property values for scope object

SimulinkRealTime.fileScope.remsignalRemove signals from scope represented by scope object

SimulinkRealTime.fileScope.setChange property values for scope object

SimulinkRealTime.fileScope.startStart execution of scope on target computer

SimulinkRealTime.fileScope.stopStop execution of scope on target computer

SimulinkRealTime.fileScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

These properties are held in common by file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

8-197

SimulinkRealTime.fileScope

Property Description Writable

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

8-198

SimulinkRealTime.fileScope

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

8-199

SimulinkRealTime.fileScope

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to file scopes.

Property Description Writeable

AutoRestart Values are 'on' and 'off'.

For file scopes, enable the file scope
to collect data up to the number of
samples (NumSamples), then start
over again, appending the new data
to the end of the signal data file.
Clear the AutoRestart check box
to have the file scope collect data up
to Number of samples, then stop.

If the named signal data file
already exists when you start the
target application, the software
overwrites the old data with the
new signal data.

No

8-200

SimulinkRealTime.fileScope

Property Description Writeable

To use the DynamicFileName
property, set AutoRestart to 'on'
first.

For host or target scopes, this
parameter has no effect.

DynamicFileNameValues are 'on' and 'off'. By
default, the value is 'off'.

Enable the ability to dynamically
create multiple log files for file
scopes.

To use DynamicFileName, set
AutoRestart to 'on' first. When
you enable DynamicFileName,
configure Filename to create
incrementally numbered file names
for the multiple log files. Failure to
do so causes an error when you try
to start the scope.

You can enable the creation of up to
99999999 files (<%%%%%%%%>.dat).
The length of a file name, including
the specifier, cannot exceed eight
characters.

For host or target scopes, this
parameter has no effect.

Yes

8-201

SimulinkRealTime.fileScope

Property Description Writeable

Filename Provide a name for the file to
contain the signal data. By
default, the target computer writes
the signal data to a file named
C:\data.dat for scope blocks. Note
that for file scopes created through
the MATLAB interface, no name
is initially assigned to FileName.
After you start the scope, the
software assigns a name for the file
to acquire the signal data. This
name typically consists of the scope
object name, ScopeId, and the
beginning letters of the first signal
added to the scope.

If you set DynamicFileName
and AutoRestart to 'on',
configure Filename to dynamically
increment. Use a base file name,
an underscore (_), and a < >
specifier. Within the specifier,
enter one to eight % symbols. Each
symbol % represents a decimal
location in the file name. The
specifier can appear anywhere
in the file name. For example,
the following value for Filename,
C:\work\file_<%%%>.dat creates
file names with the following
pattern:

file_001.dat
file_002.dat
file_003.dat

No

8-202

SimulinkRealTime.fileScope

Property Description Writeable

The last file name of this series will
be file_999.dat. If the function
is still logging data when the last
file name reaches its maximum
size, the function starts from the
beginning and overwrites the first
file name in the series. If you do
not retrieve the data from existing
files before they are overwritten,
the data is lost.

For host or target scopes, this
parameter has no effect.

MaxWriteFileSizeProvide the maximum size of
Filename, in bytes. This value
must be a multiple of WriteSize.
Default is 536870912.

When the size of a log file reaches
MaxWriteFileSize, the software
creates a subsequently numbered
file name, and continues logging
data to that file, up until the
highest log file number you have
specified. If the software cannot
create additional log files, it
overwrites the first log file.

For host or target scopes, this
parameter has no effect.

Yes

8-203

SimulinkRealTime.fileScope

Property Description Writeable

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

WriteMode For file scopes, specify when a
file allocation table (FAT) entry
is updated. Values are 'Lazy'
or 'Commit'. Both modes write
the signal data to the file. With
'Commit' mode, each file write
operation simultaneously updates
the FAT entry for the file. This
mode is slower, but the file system
maintains the actual file size. With
'Lazy' mode, the FAT entry is
updated only when the file is closed
and not during each file write
operation. This mode is faster, but
if the system crashes before the file
is closed, the file system might not
know the actual file size (the file
contents, however, will be intact).

For host or target scopes, this
parameter has no effect.

Yes

WriteSize Enter the block size, in bytes, of
the data chunks. This parameter

Yes

8-204

SimulinkRealTime.fileScope

Property Description Writeable

specifies that a memory buffer,
of length number of samples
(NumSamples), collect data in
multiples of WriteSize. By default,
this parameter is 512 bytes, which
is the typical disk sector size. Using
a block size that is the same as
the disk sector size provides better
performance.

If you experience a system crash,
you can expect to lose an amount of
data the size of WriteSize.

For host or target scopes, this
parameter has no effect.

8-205

SimulinkRealTime.fileScope.addsignal

Purpose Add signals to scope represented by scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

8-206

SimulinkRealTime.fileScope.addsignal

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also SimulinkRealTime.fileScope.remsignal
| SimulinkRealTime.fileScope.set |
SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getsignalid

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

8-207

SimulinkRealTime.fileScope.get

Purpose Return property values for scope objects

Syntax get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector
of scope objects.

scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

8-208

SimulinkRealTime.fileScope.get

Property Description Writable

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

8-209

SimulinkRealTime.fileScope.get

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

8-210

SimulinkRealTime.fileScope.get

Property Description Writable

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples List the readable properties, along with their current values. This is
given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also SimulinkRealTime.fileScope.set |
SimulinkRealTime.hostScope.set |
SimulinkRealTime.targetScope.set | get |
SimulinkRealTime.target.get

8-211

SimulinkRealTime.fileScope.remsignal

Purpose Remove signals from scope represented by scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

8-212

SimulinkRealTime.fileScope.remsignal

Remove signals from the scope on the target computer with the scope
object property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also SimulinkRealTime.fileScope.addsignal |
SimulinkRealTime.hostScope.addsignal |
SimulinkRealTime.targetScope.addsignal |
SimulinkRealTime.target.getsignalid

8-213

SimulinkRealTime.fileScope.set

Purpose Change property values for scope objects

Syntax set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
. . .)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.

'property_name'Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

8-214

SimulinkRealTime.fileScope.set

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

8-215

SimulinkRealTime.fileScope.set

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

8-216

SimulinkRealTime.fileScope.set

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}
Signals: {}

NumPrePostSamples: {}

8-217

SimulinkRealTime.fileScope.set

Mode: {5x1 cell}
YLimit: {}

Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also set | SimulinkRealTime.fileScope.get
| SimulinkRealTime.hostScope.get |
SimulinkRealTime.targetScope.get |
SimulinkRealTime.target.set

8-218

SimulinkRealTime.fileScope.start

Purpose Start execution of scope on target computer

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target computer command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target computer
represented by a scope object on the host computer. This method might
not start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add Simulink Real-Time scope blocks
to your Simulink model.

8-219

SimulinkRealTime.fileScope.start

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also SimulinkRealTime.fileScope.stop |
SimulinkRealTime.hostScope.stop |
SimulinkRealTime.targetScope.stop |
SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

8-220

SimulinkRealTime.fileScope.stop

Purpose Stop execution of scope on target computer

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target computer command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

8-221

SimulinkRealTime.fileScope.stop

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also SimulinkRealTime.fileScope.start |
SimulinkRealTime.hostScope.start |
SimulinkRealTime.targetScope.start
| SimulinkRealTime.target.getscope |
SimulinkRealTime.target.stop

8-222

SimulinkRealTime.fileScope.trigger

Purpose Software-trigger start of data acquisition for scope(s)

Syntax trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)
sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes

8-223

SimulinkRealTime.fileScope.trigger

allscopes.trigger or trigger(allscopes)

8-224

SimulinkRealTime.hostScope

Purpose Control and access properties of host scopes

Description The scope gets a data package from the kernel, waits for an upload
command from the host computer, and uploads the data to the host.
The host computer displays the data using a scope viewer or other
MATLAB functions.

Methods

These methods are held in common by file, host, and target scopes.

Method Description

SimulinkRealTime.hostScope.addsignalAdd signals to scope represented by scope object

SimulinkRealTime.hostScope.getReturn property values for scope object

SimulinkRealTime.hostScope.remsignalRemove signals from scope represented by scope object

SimulinkRealTime.hostScope.setChange property values for scope object

SimulinkRealTime.hostScope.startStart execution of scope on target computer

SimulinkRealTime.hostScope.stopStop execution of scope on target computer

SimulinkRealTime.hostScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

These properties are held in common by file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

8-225

SimulinkRealTime.hostScope

Property Description Writable

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

8-226

SimulinkRealTime.hostScope

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

8-227

SimulinkRealTime.hostScope

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to host scopes.

Property Description Writeable

Data Contains the output data for a
single data package from a scope.

For target or file scopes, this
parameter has no effect.

No

Time Contains the time data for a single
data package from a scope.

For target or file scopes, this
parameter has no effect.

No

8-228

SimulinkRealTime.hostScope.addsignal

Purpose Add signals to scope represented by scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

8-229

SimulinkRealTime.hostScope.addsignal

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also SimulinkRealTime.fileScope.remsignal
| SimulinkRealTime.targetScope.set |
SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getsignalid

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

8-230

SimulinkRealTime.hostScope.get

Purpose Return property values for scope objects

Syntax get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector
of scope objects.

scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

8-231

SimulinkRealTime.hostScope.get

Property Description Writable

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

8-232

SimulinkRealTime.hostScope.get

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

8-233

SimulinkRealTime.hostScope.get

Property Description Writable

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples List the readable properties, along with their current values. This is
given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also SimulinkRealTime.fileScope.set |
SimulinkRealTime.targetScope.set | get |
SimulinkRealTime.target.get

8-234

SimulinkRealTime.hostScope.remsignal

Purpose Remove signals from scope represented by scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

8-235

SimulinkRealTime.hostScope.remsignal

Remove signals from the scope on the target computer with the scope
object property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also SimulinkRealTime.fileScope.addsignal |
SimulinkRealTime.targetScope.addsignal |
SimulinkRealTime.target.getsignalid

8-236

SimulinkRealTime.hostScope.set

Purpose Change property values for scope objects

Syntax set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
. . .)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.

'property_name'Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

8-237

SimulinkRealTime.hostScope.set

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

8-238

SimulinkRealTime.hostScope.set

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

8-239

SimulinkRealTime.hostScope.set

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}
Signals: {}

NumPrePostSamples: {}

8-240

SimulinkRealTime.hostScope.set

Mode: {5x1 cell}
YLimit: {}

Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also set | SimulinkRealTime.fileScope.get
| SimulinkRealTime.targetScope.get |
SimulinkRealTime.target.set

8-241

SimulinkRealTime.hostScope.start

Purpose Start execution of scope on target computer

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target computer command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target computer
represented by a scope object on the host computer. This method might
not start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add Simulink Real-Time scope blocks
to your Simulink model.

8-242

SimulinkRealTime.hostScope.start

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also SimulinkRealTime.fileScope.stop |
SimulinkRealTime.targetScope.stop |
SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

8-243

SimulinkRealTime.hostScope.stop

Purpose Stop execution of scope on target computer

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target computer command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

8-244

SimulinkRealTime.hostScope.stop

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also SimulinkRealTime.fileScope.start |
SimulinkRealTime.targetScope.start
| SimulinkRealTime.target.getscope |
SimulinkRealTime.target.stop

8-245

SimulinkRealTime.hostScope.trigger

Purpose Software-trigger start of data acquisition for scope(s)

Syntax trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)
sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes

8-246

SimulinkRealTime.hostScope.trigger

allscopes.trigger or trigger(allscopes)

8-247

SimulinkRealTime.targetScope

Purpose Control and access properties of target scopes

Description The kernel acquires a data package and the scope displays the data on
the target computer screen. Depending on the setting of DisplayMode,
the data may be displayed numerically or graphically by a redrawing,
sliding, and rolling display.

Methods

These methods are held in common by file, host, and target scopes.

Method Description

SimulinkRealTime.targetScope.addsignalAdd signals to scope represented by scope object

SimulinkRealTime.targetScope.getReturn property values for scope object

SimulinkRealTime.targetScope.remsignalRemove signals from scope represented by scope object

SimulinkRealTime.targetScope.setChange property values for scope object

SimulinkRealTime.targetScope.startStart execution of scope on target computer

SimulinkRealTime.targetScope.stopStop execution of scope on target computer

SimulinkRealTime.targetScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

These properties are held in common by file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

8-248

SimulinkRealTime.targetScope

Property Description Writable

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

8-249

SimulinkRealTime.targetScope

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

8-250

SimulinkRealTime.targetScope

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

These properties are specific to target scopes.

Property Description Writeable

DisplayMode For target scopes, indicate how a
scope displays the signals. Values
are 'Numerical', 'Redraw'
(default), 'Sliding', and
'Rolling'.

For host or file scopes, this
parameter has no effect.
.

Yes

Grid Values are 'on' and 'off'.

For host or file scopes, this
parameter has no effect.

Yes

8-251

SimulinkRealTime.targetScope

Property Description Writeable

Mode

Note The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.

• For host scopes, this parameter
has no effect.

Yes

YLimit Minimum and maximum y-axis
values. This property can be set to
'auto'.

For host or file scopes, this
parameter has no effect.

Yes

8-252

SimulinkRealTime.targetScope.addsignal

Purpose Add signals to scope represented by scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

8-253

SimulinkRealTime.targetScope.addsignal

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also SimulinkRealTime.fileScope.remsignal
| SimulinkRealTime.fileScope.set |
SimulinkRealTime.target.getsignalid

How To • “Target Scope Usage”

• “Host Scope Usage”

• “File Scope Usage”

• “Application and Driver Scripts”

8-254

SimulinkRealTime.targetScope.get

Purpose Return property values for scope objects

Syntax get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope or name of a vector
of scope objects.

scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

8-255

SimulinkRealTime.targetScope.get

Property Description Writable

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

8-256

SimulinkRealTime.targetScope.get

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

8-257

SimulinkRealTime.targetScope.get

Property Description Writable

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples List the readable properties, along with their current values. This is
given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also SimulinkRealTime.fileScope.set |
SimulinkRealTime.hostScope.set | get |
SimulinkRealTime.target.get

8-258

SimulinkRealTime.targetScope.remsignal

Purpose Remove signals from scope represented by scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

8-259

SimulinkRealTime.targetScope.remsignal

Remove signals from the scope on the target computer with the scope
object property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also SimulinkRealTime.hostScope.addsignal |
SimulinkRealTime.targetScope.addsignal |
SimulinkRealTime.target.getsignalid

8-260

SimulinkRealTime.targetScope.set

Purpose Change property values for scope objects

Syntax set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
. . .)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.

'property_name'Name of a scope object property. Always use
quotation marks.

property_value Value for a scope object property. Always use
quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

8-261

SimulinkRealTime.targetScope.set

Property Description Writable

Application Name of the Simulink model associated with this
scope object.

No

Decimation A number n, where every nth sample is acquired
in a scope window.

Yes

NumPrePostSamples Number of samples collected before or after a
trigger event. The default value is 0. Entering a
negative value collects samples before the trigger
event. Entering a positive value collects samples
after the trigger event. If you set TriggerMode
to 'FreeRun', this property has no effect on data
acquisition.

Yes

NumSamples Number of contiguous samples captured during
the acquisition of a data package. If the scope
stops before capturing this number of samples,
the scope has the collected data up to the end of
data collection, then has zeroes for the remaining
uncollected data. Note that you should know what
type of data you are collecting, it is possible that
your data contains zeroes.

For file scopes, this parameter works in
conjunction with the AutoRestart check box. If
the AutoRestart box is selected, the file scope
collects data up to Number of Samples, then
starts over again, overwriting the buffer. If the
AutoRestart box is not selected, the file scope
collects data only up to Number of Samples,
then stops.

Yes

ScopeId A numeric index, unique for each scope. No

Signals List of signal indices from the target object to
display on the scope.

Yes

8-262

SimulinkRealTime.targetScope.set

Property Description Writable

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has been
stopped (interrupted), or acquisition is finished.
Values are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope and
start acquiring data. The trigger level can be
crossed with either a rising or falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal', and
'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope the
current scope should trigger on. For example, if
TriggerSample is 0 (default), the current scope
triggers on sample 0 (first sample acquired) of the
triggering scope. This means that the two scopes
will be perfectly synchronized. If TriggerSample
is 1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition cycle)
of the triggering scope.

As a special case, setting TriggerSample to -1
means that the current scope is triggered at the
end of the acquisition cycle of the triggering scope.
Thus, the first sample of the triggering scope is
acquired one sample after the last sample of the
triggering scope.

Yes

8-263

SimulinkRealTime.targetScope.set

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the scope
to use for a trigger. A scope can be set to trigger
when another scope is triggered. You do this by
setting the slave scope property TriggerScope to
the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the
target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal. Values
are 'Either' (default), 'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed on the
host computer or on the target computer. Values
are 'Host', 'Target', and 'File'.

Property Type is set only once, when the scope is
created on the target computer.

No

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}
Signals: {}

NumPrePostSamples: {}

8-264

SimulinkRealTime.targetScope.set

Mode: {5x1 cell}
YLimit: {}

Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also set | SimulinkRealTime.hostScope.get
| SimulinkRealTime.targetScope.get |
SimulinkRealTime.target.set

8-265

SimulinkRealTime.targetScope.start

Purpose Start execution of scope on target computer

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target computer command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target computer
represented by a scope object on the host computer. This method might
not start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add Simulink Real-Time scope blocks
to your Simulink model.

8-266

SimulinkRealTime.targetScope.start

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also SimulinkRealTime.hostScope.stop |
SimulinkRealTime.targetScope.stop |
SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

8-267

SimulinkRealTime.targetScope.stop

Purpose Stop execution of scope on target computer

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target computer command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.

scope_object_vector Name of a single scope object, name of
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

8-268

SimulinkRealTime.targetScope.stop

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also SimulinkRealTime.hostScope.start |
SimulinkRealTime.targetScope.start
| SimulinkRealTime.target.getscope |
SimulinkRealTime.target.stop

8-269

SimulinkRealTime.targetScope.trigger

Purpose Software-trigger start of data acquisition for scope(s)

Syntax trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)
sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes
allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes

8-270

SimulinkRealTime.targetScope.trigger

allscopes.trigger or trigger(allscopes)

8-271

	toc
	Introduction
	Simulink Real-Time APIs
	Simulink Real-Time API for Microsoft .NET Framework
	Simulink Real-Time C API
	Required Products

	Simulink Real-Time API for Microsoft .NET Framework
	Using the Simulink Real-Time API for .NET Framework
	Features and Benefits
	xpcosc Client Applications
	File Server Browser Client Application

	Simulink Real-Time .NET API Object Model
	Simulink Real-Time API for .NET Framework Classes
	Mathworks.xPCTarget.Framework.xPCTargetPC
	Mathworks.xPCTarget.Framework.xPCApplication
	Mathworks.xPCTarget.Framework.xPCScopes
	Mathworks.xPCTarget.Framework.xPCParameters
	Mathworks.xPCTarget.Framework.xPCParameter
	Mathworks.xPCTarget.Framework.xPCSignals
	Mathworks.xPCTarget.Framework.xPCSignal
	Mathworks.xPCTarget.Framework.xPCAppLogger

	Simulink Real-Time .NET API Usage
	Simulink Real-Time .NET API Application Deployment

	Simulink Real-Time API for C
	Using the C API
	Visual C Console Application
	Target Application
	Folders and Files
	Building the Simulink Real-Time Application
	Using Another C/C++ Compiler

	Creating a Visual C Application
	Placing the Target Application File in a Different Folder

	Building a Visual C Application
	Running an Simulink Real-Time Visual C API Application
	Using the Simulink Real-Time C API Application
	How to Run the sf_car_xpc Executable

	C Code for sf_car_xpc.c

	Simulink Real-Time .NET API Examples
	Visual Basic GUI Using .NET
	Before Starting
	Accessing the Demo Project Solution
	Rebuilding the Demo Project Solution
	Using the Demo Executable

	Simulink Real-Time API Reference for Microsoft .NET Framework
	Simulink Real-Time API for Microsoft .NET Framework — Alphabetic

	Simulink Real-Time API Reference for C
	C API Error Messages
	C API Structures and Functions — Alphabetical List

	Simulink Real-Time API Reference for COM
	COM API Methods — Alphabetical List

	MATLAB API
	MATLAB API — Alphabetical List
	slrtbench
	slrtbench this
	slrtbench this -verbose -reboot -cleanup
	slrtbench xpcosc
	slrtbench xpcosc --verbose -reboot -cleanup
	expected_results = slrtbench()
	current_results = slrtbench('xpcosc','-verbose','-reboot','-clea
	Default

